Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20110172-10    https://doi.org/10.11896/cldb.20110172
  金属与金属基复合材料 |
基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证
盛鹰1,2, 贾彬2,3,*, 王汝恒1,2, 陈国平1,2
1 西南科技大学工程材料与结构冲击振动四川省重点实验室,四川 绵阳 621000
2 西南科技大学土木工程与建筑学院,四川 绵阳 621000
3 中国空气动力研究与发展中心飞行器结冰与防除冰重点实验室,四川 绵阳 621000
Multiscale Numerical Simulation Based on Cohesive Zone Model and Experimental Verification of Coupling Compound Crack Propagation
SHENG Ying1,2, JIA Bin2,3,*, WANG Ruheng1,2, CHEN Guoping1,2
1 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang 621000, Sichuan, China
2 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621000, Sichuan, China
3 Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China
下载:  全 文 ( PDF ) ( 9308KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在外载荷作用下,材料的破坏与失效问题是一个涵盖从微观到宏观、从时间到空间等多个尺度相互耦合与关联的系统性科学问题。本研究以α-Ti材料为例,首先运用微观观测实验手段分析了α-Ti的显微组织结构和相结构,采用蒙特卡洛方法对微结构(晶粒大小、形状及分布)进行随机抽样处理,确定了其微结构的分布规律。通过与实验测得的材料强度做对比分析,并结合图像处理的方法获得微结构的定量化信息,探明了微结构对材料宏细观性能的影响,为微观尺度的分子动力学模型提供了可靠的基础。然后建立了三组包含复合微观缺陷的α-Ti拉伸微观计算模型,分别获得了界面层粘结力与其上下表面的相对位移之间的定量关系(T-S曲线)。由于T-S曲线中包含了与裂纹尖端演化相关的微观信息(如位错发射和运动、裂尖钝化、裂纹偏折、孔洞成核和长大、孪晶等),再将T-S曲线与曲线中关键转折点所对应的原子构型相结合,从原子尺度观察并解释了α-Ti材料中不同复合微观缺陷扩展的现象、规律和机理。最后,采用基于原子模拟的内聚力模型对单调拉伸条件下CT试件的裂纹扩展做多尺度分析,研究了不同微观缺陷对材料宏观断裂参数的影响程度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盛鹰
贾彬
王汝恒
陈国平
关键词:  多尺度  蒙特卡洛方法  微观缺陷扩展  内聚力模型  断裂参数    
Abstract: The damage and failure mechanisms of materials under external loads are vital scientific challenges, which contain coupling and correlation of multiple scales, such as macro and micro scales as well as time and space scales. Taking α-Ti as example, microstructure and phase structure of α-Ti were first analyzed by microscopic observation. Subsequently, the size, shape and distribution of grains were randomly sampled by the Monte Carlo method, and the microstructural characteristics were obtained. By comparing with the strength determined by employing the macro experiments as well as using the image processing methods, the quantitative microstructural properties were acquired, along with revealing the influence of microstructure on the macro and micro properties of the material. The microstructural characteristics obtained microscopically provided reliable evidence for the micro scale molecular dynamics simulation. Secondly, the molecular dynamics analyses of the three α-Ti models with compounding micro defects were conducted, and the quantitative relationship between the interfacial bonding force and the relative separation displacement of the upper and lower surfaces (T-S curve) were obtained. The microscopic information related to the evolution of the crack tip, such as dislocation emission and motion, crack tip blunting, crack deflection, void initiation and growth, twinning, etc., is contained in the T-S curve. By combining the atomic configuration corresponding to the turning point of the T-S curve, the principle and mechanism of propagation of the micro-scale defects at atomic scale in α-Ti were ascertained. Finally, the multiscale method based on the atomic-based cohesive zone model for combining the macroscopic and microscopic scales was employed to simulate the crack propagation in the CT specimen under uniaxial tensile load, and the influence of micro defects on the fracture parameters was subsequently studied.
Key words:  multiscale    Monte Carlo method    micro-scale defects propagation    cohesive zone model    fracture parameter
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  O341  
基金资助: 四川省科技计划重点研发项目(2020YFG0183);四川省科技厅项目(2020JDTD0021);飞行器结冰与防除冰重点实验室开放课题(ALADL20180103);工程材料与结构冲击振动四川省重点实验室开放基金项目(18kfgk12)
通讯作者:  jiabin@swust.edu.cn   
作者简介:  盛鹰,西南科技大学讲师,2017年获得四川大学固体力学专业博士学位。以第一作者或通讯作者在国内外学术期刊上发表论文20余篇,获得国家发明专利或实用新型专利80余项。研究方向为工程材料变形与破坏的多尺度数值模拟、结构振动与冲击的实验与数值模拟。
贾彬,西南科技大学,教授,2011年7月毕业于重庆大学,获得工学博士学位。主要从事纤维复材与结构一体化技术研究及工程应用。在国内外重要期刊发表文章30多篇,专利10余项,省级科技进步奖1项。
引用本文:    
盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
SHENG Ying, JIA Bin, WANG Ruheng, CHEN Guoping. Multiscale Numerical Simulation Based on Cohesive Zone Model and Experimental Verification of Coupling Compound Crack Propagation. Materials Reports, 2022, 36(4): 20110172-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110172  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20110172
1 Ding J, Wang J, Huang X, et al. Materials Reports B: Research Papers, 2018, 32(9), 3171(in Chinese).
丁军, 汪建, 黄霞, 等. 材料导报:研究篇, 2018, 32(9), 3171.
2 Niinomi M.Science and Technology of Advanced Materials, 2003, 4(5), 445.
3 Yao Z, Li X, Wei H, et al. International Journal of Applied Ceramic Technology, 2019, 16(3), 994.
4 Guo P, Zhao Y Q, Hong Q.Materials Reports B: Research Papers, 2019, 33(5), 3448(in Chinese).
郭萍, 赵永庆, 洪权, 等. 材料导报:研究篇, 2019, 33(5), 3448.
5 Huang C W, Yuan P, Zhao Y Q, et al. Rare Metal Materials and Engineering, 2016, 45(1), 254(in Chinese).
黄朝文, 葛鹏, 赵永庆, 等. 稀有金属材料与工程, 2016, 45(1), 254.
6 Foehring D, Chew H B, Lambros J.Materials Science and Engineering A, 2018, 724(5), 536.
7 Foehring D, Chew H B, Lambros J.Materials Science and Engineering A, 2018, 724(5), 536.
8 Zhou H F.Chinese Journal of Solid Mechanics, 2019, 40(3), 4(in Chinese).
周昊飞. 固体力学学报, 2019, 40(3), 4.
9 Steinhauser M O.Computational Multiscale Modeling of Fluids and Solids, Springer Berlin Heidelberg, Germany, 2017.
10 Tan W Y, Feng Y P.Journal of Guangzhou University(Natural Science Edition), 2018, 17(4),18(in Chinese).
谭文燕, 冯永平. 广州大学学报(自然科学版), 2018, 17(4),18.
11 Kevlahan N.Physics Today, 2012, 65(6), 56.
12 Zhuo X X, Liu H, Chu X H, et al. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2), 378(in Chinese).
卓小翔, 刘辉, 楚锡华, 等. 力学学报, 2016, 48(2), 378.
13 Yang Z H. The second-order two-scale method for predicting dynamic thermos-mechanical performance of random composite materials.Ph.D. Thesis, Northwestern Polytechnical University, China, 2014(in Chinese).
杨自豪. 随机复合材料动态热力耦合性能预测的二阶双尺度方法, 博士学位论文, 西北工业大学, 2014.
14 Song K, Wang L S, Liu B, et al.Journal of Mechanical Strength, 2018, 40(2), 319(in Chinese).
宋鹍, 王路生, 刘泊, 等. 机械强度, 2018, 40(2), 319.
15 Cao L Q, Huang J Z.Science & Technology Information, 2016, 14(19), 177(in Chinese).
曹礼群, 黄记祖. 科技资讯, 2016, 14(19), 17.
16 Li H, Cui J Z, Li B W.Applied Mathematics and Mechanics, 2015, 36(4), 343(in Chinese).
李辉, 崔俊芝, 李博文. 应用数学和力学, 2015, 36(4), 343.
17 Xiang M, Chen J, Su R.Computational Materials Science, 2016, 117(5), 370.
18 Sheng Y, Zeng X G, Guo Y, et al. Journal of Sichuan University(Natural Science Edition), 2017, 54(1), 124(in Chinese).
盛鹰, 曾祥国, 郭杨, 等. 四川大学学报(自然科学版), 2017, 54(1), 124.
19 Liu X J, Chen Y C, Lu Y, et al. Acta Metallurgica Sinica, 2019, 56(1), 1(in Chinese).
刘兴军, 陈悦超, 卢勇, 等. 金属学报, 2019, 56(1), 1.
20 Lloyd J T, Zimmerman J A, Jones R E, et al. Modelling & Simulation in Materials Science & Engineering, 2011, 19(6), 065007.
21 Li X H, Di Y L, Wang H D, et al. Materials Reports A: Review Papers, 2019, 33(5), 76(in Chinese).
李雪换, 底月兰, 王海斗, 等. 材料导报:综述篇, 2019, 33(5), 76.
22 Xu D S, Wang H, Teng C Y.E-science Technology & Application, 2015, 6(3), 14(in Chinese).
徐东生, 王皞,滕春禹,等. 科研信息化技术与应用,2015,6(3),14.
23 Zhang X M, Li M, Hui Y Q, et al. Ordnance Material Science and Engineering, 2020, 43(1), 11(in Chinese).
张学敏, 李咪, 惠玉强, 等. 兵器材料科学与工程, 2020, 43(1), 11.
24 Panin V E, Surikova N S, Lider A M, et al. Physical Mesomechanics, 2018, 21(5), 452.
25 Kakogiannis D, Verleysen P, Belkassem B, et al. International Journal of Impact Engineering, 2018, 119(9), 1.
26 Daugherty R L, Ingersoll A C. Fluid mechanics. McGraw-Hill, USA, 1954, pp.25.
27 Amsterdam V U.Understanding Molecular Simulation, 2014, 11(4), 589.
28 Wadley H N G, Zhou X, Johnson R A, et al. Progress in Materials Science, 2001, 46(3), 329.
[1] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[2] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[3] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[4] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[5] 弯艳玲, 张猛, 杨健, 于化东. 多尺度微结构对铝合金表面疏水性能的影响[J]. 材料导报, 2019, 33(16): 2715-2719.
[6] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[7] 冷建成, 李政达, 王玉洁, 周临风. 循环应力对磁记忆效应影响的试验研究[J]. 材料导报, 2019, 33(10): 1723-1727.
[8] 张文凤, 邹爱成, 刘运强, 叶东, 刘晓刚, 严伟. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611.
[9] 周思源,金剑锋,王璐,曹敬祎,杨培军. 多尺度模拟研究纳米凸体几何形貌对初始塑性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 316-321.
[10] 孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed