Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23040011-9    https://doi.org/10.11896/cldb.23040011
  金属与金属基复合材料 |
激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律
张志强1, 贺世伟1, 李涵茜1, 路学成1, 张天刚1, 王浩2,*
1 中国民航大学航空工程学院,天津 300300
2 天津职业技术师范大学机械工程学院,天津 300300
Effect of Laser and CMT+P Arc Hybrid Additive Process on Porosity Defectsin of 2024 Aluminum Alloy
ZHANG Zhiqiang1, HE Shiwei1, LI Hanxi1, LU Xuecheng1, ZHANG Tiangang1, WANG Hao2,*
1 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
2 School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 22746KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高强铝合金激光-电弧复合增材制造技术在民用航空领域具有广阔的应用前景,但其气孔率的控制仍存在技术难题。本工作基于激光与冷金属过渡加脉冲(CMT+P)复合增材制造技术,对增材制造2024铝合金薄壁结构件的气孔率开展研究。通过单因素试验,研究了送丝速度、扫描速度、激光功率等工艺参数对薄壁增材件的宏观形貌、气孔率及气孔尺度分布的影响规律。在单因素试验的基础上,以薄壁增材件的气孔率为响应值,通过响应面中心组合试验(CCD)优化工艺参数。结果表明,送丝速度、扫描速度、激光功率等工艺参数都会对薄壁增材件的宏观形貌、气孔率及气孔尺度分布产生影响;建立的二阶回归响应面模型能直观地反映2024铝合金激光与CMT+P电弧复合增材工艺参数与气孔率之间的关系,可用于预测不同工艺参数下薄壁增材件的气孔率;通过二阶回归模型得到优化的2024铝合金激光与CMT+P复合增材工艺参数范围为:送丝速度4.8~5.0 m/min、扫描速度16~18 mm/s、激光功率2 000~2 200 W。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志强
贺世伟
李涵茜
路学成
张天刚
王浩
关键词:  高强铝合金  激光-CMT+P  增材制造  单因素试验  响应面法  气孔率    
Abstract: The laser-arc hybrid additive manufacturing technology for high-strength aluminum alloys has a broad application prospect in civil aviation, but there are still technical challenges in controlling its porosity. This work investigated the porosity of thin-walled additive parts made of 2024 aluminum alloy based on laser and cold metal transition plus pulse (CMT+P) arc hybrid additive manufacturing technology. The influence of process parameters such as wire feeding speed, scanning speed and laser power on the macroscopic morphology, porosity and pore scale distribution of the thin-walled additive parts was investigated through single-factor tests. Based on the single-factor test, the process parameters were optimized by the response surface central composite design test(CCD) with the porosity of the thin-walled additive parts as the response value. The results show that the process parameters such as wire feeding speed, scanning speed and laser power all affect the macroscopic morphology, porosity and pore scale distribution of the additive parts; the established quadratic regression response surface models can visually reflect the relationship between the process parameters and the porosity of 2024 aluminum alloy laser and CMT+P arc hybrid additive, and can be used to predict the porosity of thin-walled additive parts under different process parameters; the optimized parameters of the 2024 aluminum alloy laser and CMT+P hybrid additive process obtained by the quadratic regression model range from 4.8—5.0 m/min for the wire feeding speed, 16—18 mm/s for the scanning speed, and 2 000—2 200 W for the laser power.
Key words:  high-strength aluminum alloy    laser-CMT+P    additive manufacturing    single-factor test    response surface method    porosity
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TG455  
  V252.2  
基金资助: 天津市教委科研计划项目(2020KJ020);航空科学基金(2020Z049067002)
通讯作者:  * 王浩,天津职业技术师范大学机械工程学院讲师、硕士研究生导师。2010年哈尔滨工业大学材料成型及控制工程专业本科毕业,2012年哈尔滨工业大学材料加工工程专业硕士毕业,2018年天津大学材料加工工程博士毕业。目前从事电弧焊接、电弧增材制造等方面的研究工作。发表论文10余篇,包括Materials Science and Engineering: A、Science and Technology of Welding & Joining、The International Journal of Advanced Manufacturing Technology等。wanghao@tute.edu.cn   
作者简介:  张志强,中国民航大学航空工程学院副教授、硕士研究生导师。2012年河北工业大学材料加工工程专业硕士毕业,2018年天津大学材料加工工程专业博士毕业后到中国民航大学工作至今。目前主要从事高性能焊接、增材制造、表面技术等方面的研究工作。发表论文80余篇,包括Corrosion Science、Applied Surface Science、Materials & Design、Tribology International、Surface & Coatings Technology、Journal of Manufacturing Processes等。
引用本文:    
张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
ZHANG Zhiqiang, HE Shiwei, LI Hanxi, LU Xuecheng, ZHANG Tiangang, WANG Hao. Effect of Laser and CMT+P Arc Hybrid Additive Process on Porosity Defectsin of 2024 Aluminum Alloy. Materials Reports, 2024, 38(14): 23040011-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040011  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23040011
1 Gao Q W, Zhao J, Shu F Y, et al. Journal of Materials Engineering, 2019, 47(11), 32 (in Chinese).
郜庆伟, 赵健, 舒凤远, 等. 材料工程, 2019, 47(11), 32.
2 Huang J G, Ren S B. Materials Reports, 2021, 35(23), 23142 (in Chinese).
黄建国, 任淑彬. 材料导报, 2021, 35(23), 23142.
3 Wang W, Zhang Y, Yu M, et al. Materials Reports, 2018, 32(S1), 415 (in Chinese).
王伟, 张勇, 余敏, 等. 材料导报, 2018, 32(S1), 415.
4 Huda Z, Taib N I, Zaharinie T. Materials Chemistry and Physics, 2009, 113, 515.
5 Zhang J L, Song B, Wei Q S, et al. Journal of Materials Science & Technology, 2018, 35, 270.
6 Tian G, Wang W Y, Chang Q, et al. Materials Reports, 2021, 35(23), 23131 (in Chinese).
田根, 王文宇, 常青, 等.材料导报, 2021, 35(23), 23131.
7 Li D C, Lu Z L, Tian X Y, et al. Acta Aeronautica et Astronautica Sinica, 2022, 43(04), 22 (in Chinese).
李涤尘, 鲁中良, 田小永, 等.航空学报, 2022, 43(04), 22.
8 Fu R, Tang S Y; Lu J P, et al. Materials & Design, 2021, 199, 109370.
9 Gu J L, Ding J L, Williams S W, et al. Journal of Materials Processing Technology, 2016, 230, 26.
10 Zhang X M, Zhang Z Y, Peng Y, et al. Materials Science Forum, 2005, 475-479, 309.
11 He C, Cui S M, Liu Y J, et al. Transactions of the China Welding Institution, 2014, 35(11), 18 (in Chinese).
何超, 崔仕明, 刘永杰, 等.焊接学报, 2014, 35(11), 18.
12 Chen L, Fang K L, Fu S H. Hot Working Technology, 2014, 43(21), 213 (in Chinese).
陈丽, 方凯龙, 傅圣华. 热加工工艺, 2014, 43(21), 213.
13 Derekar K S, Addison A, Joshi S S,et al. The International Journal of Advanced Manufacturing Technology, 2020, 107, 311.
14 Cong B Q, Ding J L. Rare Metal Materials and Engineering, 2014, 43(12), 3149 (in Chinese).
从保强, 丁佳洛. 稀有金属材料与工程, 2014, 43(12), 3149.
15 Cong B Q, Sun H Y, Peng P, et al. Rare Metal Materials and Enginee-ring, 2017, 46(05), 1359 (in Chinese).
从保强, 孙红叶, 彭鹏, 等.稀有金属材料与工程, 2017, 46(05), 1359.
16 Cong B Q, Ding J L, Williams S. The International Journal of Advanced Manufacturing Technology, 2015, 76, 1593.
17 Li Q, Feng C, Liu B, et al. Aerospace Materials & Technology, 2022, 52(02), 129 (in Chinese).
李权, 冯晨, 刘彬,等. 宇航材料工艺, 2022, 52(02), 129.
18 Liu W L, Jiang T, Rao Y Z, et al. Electric Welding Machine, 2019, 49(06), 15 (in Chinese).
刘伟亮, 姜涛, 饶宇中, 等.电焊机, 2019, 49(06), 15.
19 Fixter J, Gu J, Ding J, et al. Materials Science Forum, 2017, 877, 611.
20 Zeng Q W. Research on process and performance of aluminum alloy parts by laser induced arc additive manufacturing. Dalian University of Techno-logy, China, 2020(in Chinese).
曾庆文. 铝合金激光诱导电弧增材制造工艺及性能研究. 硕士学位论文, 大连理工大学, 2020.
21 Sun C S, Zhang Z D, Liu L M. Transactions of the China Welding Institution, 2018, 39(09), 13 (in Chinese).
孙承帅, 张兆栋, 刘黎明. 焊接学报, 2018, 39(09), 13.
22 Vorontsov A, Zykova A, Chumaevskii A, et al. Materials Letters, 2021, 291, 129594.
23 Ding Y R, Chen F R, Yang F, et al. Materials Reports, 2021, 35(02), 2103 (in Chinese).
丁亚茹, 陈芙蓉, 杨帆, 等. 材料导报, 2021, 35(02), 2103.
24 Xu M, Liu S Y, Li Y Q, et al. Applied Lased, 2017, 37(03), 362 (in Chinese).
徐茂, 刘双宇, 李彦清, 等.应用激光, 2017, 37(03), 362.
25 Ola O T, Valdez R L, Oluwasegun K M, et al. The International Journal of Advanced Manufacturing Technology, 2019, 105, 4827.
26 Zhao X, Xin Z B, Zhao H, et al. Hot Workong Technology, 2022, 51(05), 57 (in Chinese).
赵昕, 辛志彬, 赵函, 等. 热加工工艺, 2022, 51(05), 57.
27 Nie W Z, Zeng J Y, Li X X, et al. Materials for Mechanical Engineering, 2021, 45(11), 97 (in Chinese).
聂文忠, 曾嘉艺, 李晓萱, 等. 机械材料工程, 2021, 45(11), 97.
28 Yin J, Hao L, Yang L L, et al. Chinese Journal of Lasers, 2022, 49(14), 108 (in Chinese).
殷杰, 郝亮, 杨亮亮, 等. 中国激光, 2022, 49(14), 108.
29 Luo Z Y, Han S G, Chen Y C, et al. Materials Reports, 2019, 33(13), 2146.
罗子艺, 韩善果, 陈永城, 等. 材料导报, 2019, 33(13), 2146.
30 Aversa A, Marchese G, Saboori A, et al. Materials, 2019, 12, 1007.
31 Huang L J, Hua X M, Wu D S, et al. Journal of Manufacturing Processes, 2018, 33, 43.
[1] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[4] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[5] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[6] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[7] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[8] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用空心微球制备超轻泡沫玻璃及其性能研究[J]. 材料导报, 2024, 38(4): 22090062-5.
[9] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[10] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[11] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[12] 曹炜鹏, 李杰, 孙小斌, 吴凯迪, 万德成, 冯运莉. CoCrFeMnNi系高熵合金制备技术研究现状[J]. 材料导报, 2024, 38(11): 23090146-12.
[13] 田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
[14] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[15] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed