Effect of Laser and CMT+P Arc Hybrid Additive Process on Porosity Defectsin of 2024 Aluminum Alloy
ZHANG Zhiqiang1, HE Shiwei1, LI Hanxi1, LU Xuecheng1, ZHANG Tiangang1, WANG Hao2,*
1 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China 2 School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300300, China
Abstract: The laser-arc hybrid additive manufacturing technology for high-strength aluminum alloys has a broad application prospect in civil aviation, but there are still technical challenges in controlling its porosity. This work investigated the porosity of thin-walled additive parts made of 2024 aluminum alloy based on laser and cold metal transition plus pulse (CMT+P) arc hybrid additive manufacturing technology. The influence of process parameters such as wire feeding speed, scanning speed and laser power on the macroscopic morphology, porosity and pore scale distribution of the thin-walled additive parts was investigated through single-factor tests. Based on the single-factor test, the process parameters were optimized by the response surface central composite design test(CCD) with the porosity of the thin-walled additive parts as the response value. The results show that the process parameters such as wire feeding speed, scanning speed and laser power all affect the macroscopic morphology, porosity and pore scale distribution of the additive parts; the established quadratic regression response surface models can visually reflect the relationship between the process parameters and the porosity of 2024 aluminum alloy laser and CMT+P arc hybrid additive, and can be used to predict the porosity of thin-walled additive parts under different process parameters; the optimized parameters of the 2024 aluminum alloy laser and CMT+P hybrid additive process obtained by the quadratic regression model range from 4.8—5.0 m/min for the wire feeding speed, 16—18 mm/s for the scanning speed, and 2 000—2 200 W for the laser power.
通讯作者:
* 王浩,天津职业技术师范大学机械工程学院讲师、硕士研究生导师。2010年哈尔滨工业大学材料成型及控制工程专业本科毕业,2012年哈尔滨工业大学材料加工工程专业硕士毕业,2018年天津大学材料加工工程博士毕业。目前从事电弧焊接、电弧增材制造等方面的研究工作。发表论文10余篇,包括Materials Science and Engineering: A、Science and Technology of Welding & Joining、The International Journal of Advanced Manufacturing Technology等。wanghao@tute.edu.cn
张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
ZHANG Zhiqiang, HE Shiwei, LI Hanxi, LU Xuecheng, ZHANG Tiangang, WANG Hao. Effect of Laser and CMT+P Arc Hybrid Additive Process on Porosity Defectsin of 2024 Aluminum Alloy. Materials Reports, 2024, 38(14): 23040011-9.
1 Gao Q W, Zhao J, Shu F Y, et al. Journal of Materials Engineering, 2019, 47(11), 32 (in Chinese). 郜庆伟, 赵健, 舒凤远, 等. 材料工程, 2019, 47(11), 32. 2 Huang J G, Ren S B. Materials Reports, 2021, 35(23), 23142 (in Chinese). 黄建国, 任淑彬. 材料导报, 2021, 35(23), 23142. 3 Wang W, Zhang Y, Yu M, et al. Materials Reports, 2018, 32(S1), 415 (in Chinese). 王伟, 张勇, 余敏, 等. 材料导报, 2018, 32(S1), 415. 4 Huda Z, Taib N I, Zaharinie T. Materials Chemistry and Physics, 2009, 113, 515. 5 Zhang J L, Song B, Wei Q S, et al. Journal of Materials Science & Technology, 2018, 35, 270. 6 Tian G, Wang W Y, Chang Q, et al. Materials Reports, 2021, 35(23), 23131 (in Chinese). 田根, 王文宇, 常青, 等.材料导报, 2021, 35(23), 23131. 7 Li D C, Lu Z L, Tian X Y, et al. Acta Aeronautica et Astronautica Sinica, 2022, 43(04), 22 (in Chinese). 李涤尘, 鲁中良, 田小永, 等.航空学报, 2022, 43(04), 22. 8 Fu R, Tang S Y; Lu J P, et al. Materials & Design, 2021, 199, 109370. 9 Gu J L, Ding J L, Williams S W, et al. Journal of Materials Processing Technology, 2016, 230, 26. 10 Zhang X M, Zhang Z Y, Peng Y, et al. Materials Science Forum, 2005, 475-479, 309. 11 He C, Cui S M, Liu Y J, et al. Transactions of the China Welding Institution, 2014, 35(11), 18 (in Chinese). 何超, 崔仕明, 刘永杰, 等.焊接学报, 2014, 35(11), 18. 12 Chen L, Fang K L, Fu S H. Hot Working Technology, 2014, 43(21), 213 (in Chinese). 陈丽, 方凯龙, 傅圣华. 热加工工艺, 2014, 43(21), 213. 13 Derekar K S, Addison A, Joshi S S,et al. The International Journal of Advanced Manufacturing Technology, 2020, 107, 311. 14 Cong B Q, Ding J L. Rare Metal Materials and Engineering, 2014, 43(12), 3149 (in Chinese). 从保强, 丁佳洛. 稀有金属材料与工程, 2014, 43(12), 3149. 15 Cong B Q, Sun H Y, Peng P, et al. Rare Metal Materials and Enginee-ring, 2017, 46(05), 1359 (in Chinese). 从保强, 孙红叶, 彭鹏, 等.稀有金属材料与工程, 2017, 46(05), 1359. 16 Cong B Q, Ding J L, Williams S. The International Journal of Advanced Manufacturing Technology, 2015, 76, 1593. 17 Li Q, Feng C, Liu B, et al. Aerospace Materials & Technology, 2022, 52(02), 129 (in Chinese). 李权, 冯晨, 刘彬,等. 宇航材料工艺, 2022, 52(02), 129. 18 Liu W L, Jiang T, Rao Y Z, et al. Electric Welding Machine, 2019, 49(06), 15 (in Chinese). 刘伟亮, 姜涛, 饶宇中, 等.电焊机, 2019, 49(06), 15. 19 Fixter J, Gu J, Ding J, et al. Materials Science Forum, 2017, 877, 611. 20 Zeng Q W. Research on process and performance of aluminum alloy parts by laser induced arc additive manufacturing. Dalian University of Techno-logy, China, 2020(in Chinese). 曾庆文. 铝合金激光诱导电弧增材制造工艺及性能研究. 硕士学位论文, 大连理工大学, 2020. 21 Sun C S, Zhang Z D, Liu L M. Transactions of the China Welding Institution, 2018, 39(09), 13 (in Chinese). 孙承帅, 张兆栋, 刘黎明. 焊接学报, 2018, 39(09), 13. 22 Vorontsov A, Zykova A, Chumaevskii A, et al. Materials Letters, 2021, 291, 129594. 23 Ding Y R, Chen F R, Yang F, et al. Materials Reports, 2021, 35(02), 2103 (in Chinese). 丁亚茹, 陈芙蓉, 杨帆, 等. 材料导报, 2021, 35(02), 2103. 24 Xu M, Liu S Y, Li Y Q, et al. Applied Lased, 2017, 37(03), 362 (in Chinese). 徐茂, 刘双宇, 李彦清, 等.应用激光, 2017, 37(03), 362. 25 Ola O T, Valdez R L, Oluwasegun K M, et al. The International Journal of Advanced Manufacturing Technology, 2019, 105, 4827. 26 Zhao X, Xin Z B, Zhao H, et al. Hot Workong Technology, 2022, 51(05), 57 (in Chinese). 赵昕, 辛志彬, 赵函, 等. 热加工工艺, 2022, 51(05), 57. 27 Nie W Z, Zeng J Y, Li X X, et al. Materials for Mechanical Engineering, 2021, 45(11), 97 (in Chinese). 聂文忠, 曾嘉艺, 李晓萱, 等. 机械材料工程, 2021, 45(11), 97. 28 Yin J, Hao L, Yang L L, et al. Chinese Journal of Lasers, 2022, 49(14), 108 (in Chinese). 殷杰, 郝亮, 杨亮亮, 等. 中国激光, 2022, 49(14), 108. 29 Luo Z Y, Han S G, Chen Y C, et al. Materials Reports, 2019, 33(13), 2146. 罗子艺, 韩善果, 陈永城, 等. 材料导报, 2019, 33(13), 2146. 30 Aversa A, Marchese G, Saboori A, et al. Materials, 2019, 12, 1007. 31 Huang L J, Hua X M, Wu D S, et al. Journal of Manufacturing Processes, 2018, 33, 43.