Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060243-6    https://doi.org/10.11896/cldb.22060243
  金属与金属基复合材料 |
金属材料激光增材制造路径规划研究现状与展望
柴媛欣1, 邢飞1,2,*, 李殿起1,*, 史建军2, 苗立国1, 卞宏友1, 闫成鑫1
1 沈阳工业大学机械工程学院,沈阳 110870
2 南京中科煜宸激光技术有限公司,南京 210038
Status and Prospect of Research on Laser Additive Manufacturing Path Planning for Metallic Materials
CHAI Yuanxin1, XING Fei1,2,*, LI Dianqi1,*, SHI Jianjun2, MIAO Liguo1, BIAN Hongyou1, YAN Chengxin1
1 School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Nanjing Zhongke Raycham Laser Technology Co., Ltd., Nanjing 210038, China
下载:  全 文 ( PDF ) ( 21047KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光增材制造技术可成形任意复杂形状零件,广泛应用于航空航天、汽车、船舶、医疗器具等领域。激光增材制造技术根据粉末提供方式的差异可分为粉末床预置铺粉的选区激光熔化技术和送粉器同步送粉的激光定向能量沉积技术。路径规划是激光增材制造过程中的重要步骤,当采用不同的路径策略时,即使硬件设备和工艺参数保持一致,零件的成形质量以及力学性能也会存在较大差异。目前,众多学者针对不同目标的路径规划策略展开了广泛的研究。本文总结了激光增材制造技术路径规划的研究现状,分析了两类目标的路径规划策略,即提高成形质量以及力学性能。最后对未来激光增材制造路径规划的研究进行了展望,为其进一步研究提供了方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴媛欣
邢飞
李殿起
史建军
苗立国
卞宏友
闫成鑫
关键词:  激光增材制造  路径规划  成形质量  力学性能    
Abstract: Laser additive manufacturing technology can shape arbitrarily complex parts and is widely used in aerospace, automotive, marine, medical apparatus, and other fields. Depending on the powder delivery method, laser additive manufacturing technology can be divided into selective laser melting technology with pre-positioned powder lay down in the powder bed and laser directed energy deposition technology with simultaneous powder delivery in the powder feeder. Path planning is an essential step in the laser additive manufacturing process. When different path strategies are used, the part forming quality and the mechanical properties can vary greatly, even if the hardware equipment and process parameters remain consistent. Many scholars have conducted extensive research on path planning strategies for different targets. This paper summarizes the current research status of laser additive manufacturing path planning. It compares and analyzes the path planning strategies for two goals:improving the forming quality and mechanical properties. Finally, future research on laser additive manufacturing path planning is prospected to provide a direction for further research.
Key words:  laser additive manufacturing    path planning    forming quality    mechanical property
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TG14  
  TH162  
基金资助: 国家科技重大专项(2019-Ⅶ-0004-0144);辽宁“百千万人才工程”资助项目(LNBQW 2020B0050)
通讯作者:  *邢飞,沈阳工业大学机械工程学院教授、博士研究生导师。2003年东北大学机械电子工程专业本科毕业,2005年中国科学院沈阳自动化研究所机械电子工程专业硕士毕业,2009年中国科学院沈阳自动化研究所机械电子工程专业博士毕业。目前主要从事智能制造、高端装备制造等方面的研究工作。中组部第二批“万人计划”入选者、科技部“领军型创新创业人才计划”入选者、江苏省双创团队领军人才、辽宁省攀登学者、中国激光加工学会学术委员会委员、中国增材制造产业联盟副理事长、十三五增材制造与激光制造重点研发计划评审组组长。获省部级一等奖1项、二等奖1项。先后主持和参与国家级、省部级科技计划项目30余项,申请专利100余项,发表学术论文40余篇,出版专著2部。
李殿起,沈阳工业大学机械工程学院教授、博士研究生导师。1990年吉林工业大学农业机械设计专业本科毕业,2002年东北大学固体力学专业硕士毕业后到沈阳工业大学工作至今,2007年东北大学模式识别与智能系统专业博士毕业。目前主要从事智能制造、机器视觉等方面的研究工作。先后主持和参与国家级、省市级项目20余项,发表学术论文40余篇。xingfei@raycham.com;dianqi@126.com   
作者简介:  柴媛欣,2017年6月、2020年6月分别于辽宁工业大学获得工学学士学位和硕士学位。现为沈阳工业大学机械工程学院博士研究生,在李殿起教授与邢飞教授的指导下进行研究。目前主要研究领域为激光关键技术开发与应用。
引用本文:    
柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
CHAI Yuanxin, XING Fei, LI Dianqi, SHI Jianjun, MIAO Liguo, BIAN Hongyou, YAN Chengxin. Status and Prospect of Research on Laser Additive Manufacturing Path Planning for Metallic Materials. Materials Reports, 2024, 38(4): 22060243-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060243  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22060243
1 Adeyemi A, Akinlabi E T, Mahamood R M. Materials Today:Procee-dings, 2018, 5(9), 18510.
2 Ling W, Wang X, Wang L, et al. Optics & Laser Technology, 2023, 157, 108648.
3 Lu H, Zhang X, Liu J, et al. Journal of Alloys and Compounds, 2022, 925, 166720.
4 Pang X, Xiong Z, Liu S, et al. Materials Science and Engineering:A, 2022, 857, 144104.
5 Wang Q Z, Lin X, Kang N, et al. Materials Science and Engineering:A, 2022, 840, 142950.
6 Xiao H, Chen C, Zhang M. Materials Research Express, 2019, 6(11), 116574.
7 Mahamood R M, Akinlabi E T. The International Journal of Advanced Manufacturing Technology, 2018, 99(5), 1545.
8 Paul S, Singh R, Yan W, et al. Scientific Reports, 2018, 8(1), 1.
9 Tan C, Zhou K, Ma W, et al. Acta Metall Sin, 2019, 56(1), 36.
10 Shiva S, Yadaiah N, Palani I A, et al. Journal of Manufacturing Processes, 2019, 48, 98.
11 Tang M, Lin X, Huang W. Materials Technology, 2016, 31(2), 90.
12 Zhang H, Zhao Y, Cai J, et al. Materials & Design, 2021, 201, 109462.
13 Doñate-Buendia C, Kürnsteiner P, Stern F, et al. Acta Materialia, 2021, 206, 116566.
14 Zhou L, Sun J, Chen J, et al. Journal of Alloys and Compounds, 2022, 928, 167130.
15 Peng J, Li J, Liu B, et al. Journal of Materials Science & Technology, 2023, 133, 12.
16 Seede R, Shoukr D, Zhang B, et al. Acta Materialia, 2020, 186, 199.
17 Su Y, Wang Y, Shi J. Materials Science and Engineering:A, 2022, 857, 144075.
18 Hespeler S, Dehghan-Niri E, Juhasz M, et al. Applied Sciences, 2022, 12(18), 8974.
19 Kim H, Lee K K, Ahn D G, et al. Materials, 2021, 14(7), 1794.
20 Cheng Y, Cao C, Yang X, et al. Materials Chemistry and Physics, 2022, 290, 126617.
21 Al-Musaibeli H, Ahmad R. The International Journal of Advanced Manufacturing Technology, 2022, 122(3), 1259.
22 Zhang X, Cui W, Li W, et al. The International Journal of Advanced Manufacturing Technology, 2019, 100(5), 1607.
23 Ren K, Chew Y, Fuh J Y H, et al. Materials & Design, 2019, 162, 80.
24 Haibo H, Wenlei S, Guan Z, et al. China Surface Engineering, 2018, 31(5), 175.
25 Xiang Z, Yan R, Wu X, et al. Optik, 2020, 206, 164316.
26 Wang X, Sun W, Chen Y, et al. The International Journal of Advanced Manufacturing Technology, 2018, 96(5), 2397.
27 Tao P, Li H, Huang B, et al. China Foundry, 2018, 15(4), 243.
28 Liu W, Saleheen K M, Tang Z, et al. Optical Engineering, 2021, 60(7), 070901.
29 Tang Q, Yin S, Zhang Y, et al. The International Journal of Advanced Manufacturing Technology, 2018, 98(5), 1671.
30 Tang X, Luo K, Lu J. Materials Research Express, 2021, 8(2), 026523.
31 Zhao J, Liu W, Xia R, et al. In:2007 International Conference on Mechatronics and Automation. Harbin, 2007, pp. 587.
32 Zhang W, Shi Y, Liu B, et al. The International Journal of Advanced Manufacturing Technology, 2009, 41(7), 706.
33 Bian H Y, Fan Q C, Li Y, et al. Journal of Mechanical Engineering, 2015, 51(24), 57 (in Chinese).
卞宏友, 范钦春, 李英, 等. 机械工程学报, 2015, 51(24), 57.
34 Yeung H, Lane B, Fox J, et al. In:2017 International Solid Freeform Fabrication Symposium. Austin, 2017, pp. 1423.
35 Zhang H, Gu D, Dai D. Virtual and Physical Prototyping, 2022, 17(2), 308.
36 Buser M, Onuseit V, Graf T. Optics and Lasers in Engineering, 2021, 138, 106412.
37 Jia H, Sun H, Wang H, et al. The International Journal of Advanced Manufacturing Technology, 2021, 113(9), 2413.
38 Chen C, Yin J, Zhu H, et al. International Journal of Machine Tools and Manufacture, 2019, 145, 103433.
39 Foroozmehr E, Kovacevic R. The International Journal of Advanced Manufacturing Technology, 2010, 51(5), 659.
40 Bian H Y, Yang G, Li Y, et al. Journal of Mechanical Engineering, 2013, 49(11), 171 (in Chinese).
卞宏友, 杨光, 李英, 等. 机械工程学报, 2013, 49(11), 171.
41 Kudzal A, McWilliams B, Hofmeister C, et al. Materials & Design, 2017, 133, 205.
42 Rashid R, Masood S H, Ruan D, et al. Journal of Materials Processing Technology, 2017, 249, 502.
43 Javidrad H R, Ghanbari M, Javidrad F. Journal of Materials Research and Technology, 2021, 12, 989.
44 Biegler M, Wang J, Kaiser L, et al. Steel Research International, 2020, 91(11), 2000017.
45 Bian H Y, Yang G, Wang G, et al. In:Applied Mechanics and Mate-rials. Wuhan, 2012, pp. 79.
46 Mohanty S, Tutum C C, Hattel J H. In:Laser-based Micro-and Na-nopackaging and Assembly VII. San Francisco, 2013, pp. 115.
47 Lu Y, Wu S, Gan Y, et al. Optics & Laser Technology, 2015, 75, 197.
48 Tolosa I, Garciandía F, Zubiri F, et al. The International Journal of Advanced Manufacturing Technology, 2010, 51(5), 639.
49 Cheng B, Shrestha S, Chou K. Additive Manufacturing, 2016, 12, 240.
50 Zhang K, Shang X F. In:Applied Mechanics and Materials. Shanghai, 2011, pp. 2640.
51 Ren Z, Tian Y L, Zhou M Y, et al. In:Advanced Materials Research. Guillin, 2012, pp. 1538.
52 Wang W, He Y, Qin L Y, et al. Applied Laser, 2016, 36(4), 373 (in Chinese).
王伟, 何妍, 钦兰云, 等. 应用激光, 2016, 36(4), 373.
53 Li J, Deng D, Hou X, et al. Materials Science and Technology, 2016, 32(12), 1223.
54 Zhang L, Ding L, Ullah S, et al. Rapid Prototyping Journal, 2020, 26(10), 1751.
55 Wang D, Wu S, Yang Y, et al. Materials, 2018, 11(10), 1821.
56 Sun Q, Guo K, Wang X, et al. Materials Science and Engineering:A, 2020, 793, 139879.
57 Deng Y Y, Li W S. Journal of Graphics, 2022, 43(1), 149 (in Chinese).
邓洋洋, 李维诗. 图学学报, 2022, 43(1), 149.
[1] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[2] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[3] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[4] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[5] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[6] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[7] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[8] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[9] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[10] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[11] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[12] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[13] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[14] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[15] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed