1 College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China 2 Shanghai Aircraft Design and Research Institute, Shanghai 201210, China 3 AVIC Aircraft Strength Research Institute,Xi’an 710065,China
Abstract: Additive manufacturing, as a representative of advanced manufacturing technology, has been widely used in aerospaceand other high-tech fields. Due to the complex processes of high energy density, extreme heating and cooling rates in metal additive manufacturing technology, the microstructure of additively manufactured as-built materials is often obviously different from that produced by traditionally manufactured techno-logy, which has an important impact on the mechanical properties of metal materials. Crystal plasticity finite element method combines the crystal plasticity theory with the finite element method, which can research the relationship between the microstructure and mechanical properties of additively manufactured metallic materials across scales, and provide the strong support for the optimization of additive manufacturing processes. This paper first summarizes recent application of crystal plastic finite element method in metal additive manufacturing, and expounds the establishment method of geometric model, which can represent the microstructure characteristics of additively manufactured metallic materials, and the application of finite element method, finally points out the development trend.
冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
FENG Zhenyu, ZHANG Hongyu, MA Jiawei, CHEN Kun, ZHOU Liangdao, SHEN Peiliang, CHEN Xiangming. Application and Progress of Crystal Plasticity Finite Element Method in the Study of Mechanical Properties in Metal Additive Manufacturing. Materials Reports, 2024, 38(1): 22070235-10.
1 Gu D D, Zhang H M, Chen H Y, et al. Chinese Journal of Lasers, 2020, 47(5), 32 (in Chinese). 顾冬冬, 张红梅, 陈洪宇, 等. 中国激光, 2020, 47(5), 32. 2 Chang K, Liang E Q, Zhang R, et al. Materials Reports, 2021, 35(3), 3176 (in Chinese). 常坤, 梁恩泉, 张韧, 等. 材料导报, 2021, 35(3), 3176. 3 Zhu J H, Cao Y F, Zhai X Y, et al. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12), 3181 (in Chinese). 朱继红, 曹吟锋, 翟星玥, 等. 力学学报, 2021, 53(12), 3181. 4 Lian Y P, Wang P D, Gao J, et al. Advances in Mechanics, 2021, 51(3), 648 (in Chinese). 廉艳平, 王潘丁, 高杰, 等. 力学进展, 2021, 51(3), 648. 5 Tu Y H, Liu Z Z, Carneiro L, et al. Materials & Design, 2022, 213, 110345. 6 Gu D D, Shi X Y, Poprawe R, et al. Science, 2021, 372(6545), 1478. 7 Van Nuland T F W, Van Dommelen J A W, Geers M G D. Mechanics of Materials, 2021, 153, 103664. 8 Kumar M S, Javidrad H R, Shanmugam R, et al. Silicon, 2022, 14(12), 7083. 9 Liu Z, Zhao Z B, Liu J R, et al. Materials Science & Engineering A, 2020, 798, 140093. 10 Poulin J R, Brailovski V, Terriault P. International Journal of Fatigue, 2018, 116, 634. 11 Yu C F, Zhao C C, Zhang Z F, et al. Acta Metallurgica Sinica, 2020, 56(5), 683 (in Chinese). 余晨帆, 赵聪聪, 张哲峰, 等. 金属学报, 2020, 56(5), 683. 12 Liu J, Xiong W, Behera A, et al. International Journal of Solids and Structures, 2017, 112(1), 35. 13 Bronkhorst C A, Mayeur J R, Livescu V, et al. International Journal of Plasticity, 2019, 118, 70. 14 Bajaj P, Hariharan A, Kini A, et al. Materials Science & Engineering A, 2020, 772, 138633. 15 Bayoumy D, Schliephake D, Dietrich S, et al. Materials and Design, 2021, 198, 109317. 16 Wang Y, Liu Y M, Liu J W, et al. Powder Metallurgy Technology, 2022, 40(2), 179 (in Chinese). 王岩, 刘雨萌, 刘江伟, 等. 粉末冶金技术, 2022, 40(2), 179. 17 Liu C H, Chen L H, Ma P P, et al. Journal of Plasticity Engineering, 2021, 28(5), 17 (in Chinese). 刘春辉, 陈龙辉, 马培培, 等. 塑性工程学报. 2021, 28(5), 17. 18 Veiga F, Del Val A G, Suarez A, et al. Materials, 2020, 12(3), 766. 19 Zhang W, Hu Y, Ma X, et al. International Journal of Fatigue, 2021, 145, 106109. 20 Zhang J, Li J, Wu S, et al. International Journal of Fatigue, 2022, 155, 106577. 21 Azhari F, Wallbrink C, Sterjovski Z, et al. International Journal of Plasticity, 2022, 148, 103127. 22 Ou C Y, Voothaluru R, Liu R C. Crystals, 2020, 10(10), 905. 23 Wang Y Y, Su Z L. Theoretical and Applied Fracture Mechanics, 2021, 111, 102849. 24 Wang L L, Xue J X, Wang Q. Materials Science & Engineering A, 2019, 751, 183. 25 Taylor G I. Institute of Metals, 1938, 62, 307. 26 Taylor G I. In:Stephen Timoshenko 60th Anniversary Volume. New York, 1938, pp. 218. 27 Schmid E, Boas W. Plasticity of crystals, Chemical Rubber Company Press, UK, 1935. 28 Mandel J. International Journal of Solids and Structures, 1965, 1(3), 273. 29 Hill R. Journal of the Mechanics and Physics of Solids, 1966, 14(2), 95. 30 Peirce D, Asaro R J, Needleman A. Acta Metallurgica, 1982, 30(6), 1087. 31 Hill R, Rice J R. Journal of the Mechanics and Physics of Solids, 1972, 20(6), 401. 32 Asaro R J, Rice J R. Journal of the Mechanics and Physics of Solids, 1977, 25(5), 309. 33 Asaro R J. Advances in Applied Mechanics, 1983, 23, 1. 34 Asaro R J. Journal of Applied Mechanics, 1983, 50, 921. 35 Asaro R J, Needleman A. Acta Metallurgica, 1985, 33(6), 923. 36 Bassani J L, Wu T Y. Proceedings of the Royal Society A-Mathematical and Physical Sciences, 1991, 435, 21. 37 Wu T Y, Bassani J L, Laird C. Proceedings of the Royal Society A-Mathematical and Physical Sciences, 1991, 435, 1. 38 Roters F, Eisenlohr P, Hantcherli L, et al. Acta Materialia, 2010, 58, 1152. 39 Zhang H M, Xu S, Li Q, et al. Journal of Plasticity Engineering, 2020, 27(5), 12 (in Chinese). 章海明, 徐帅, 李倩, 等. 塑性工程学报, 2020, 27(5), 12. 40 Anand L, Kothari M. Journal of the Mechanics and Physics of Solids, 1996, 44(4), 525. 41 Kalidindi S R, Bronkhorst C A, Anand L. Journal of the Mechanics and Physics of Solids, 1992, 40(3), 537. 42 Voce E. Institute of Metals, 1948, 74, 537. 43 Rajan A N R, Krochmal M, Wegener T, et al. Materials, 2022, 15(16), 5562. 44 Branco D C, Vasconcelos L S, An L, et al. Journal of the Mechanics and Physics of Solids, 2021, 151, 104391. 45 Li Y Y, Jiang W. Journal of Mechanical Engineering, 2021, 57(2), 97 (in Chinese). 李银银, 蒋玮. 机械工程学报, 2021, 57(2), 97. 46 Tekumalla S, Selvarajou B, Raman S, et al. Materials Science & Engineering A, 2022, 833, 142493. 47 Shakil S I, Dharmendra C, Amirkhiz B S, et al. Materials Science & Engineering A, 2020, 792, 139773. 48 Gorji M B, Tancogne-Dejean T, Mohr D. Acta Materialia, 2018, 148(15), 442. 49 Van Nuland T F W, Van Dommelen J A W, Geers M G D. Mechanics of Materials, 2021, 153, 103664. 50 Huang Y G. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Ph. D. Thesis, Harvard University, USA, 1991. 51 Martínez-Pañeda E, Betegón C. International Journal of Solids and Structures, 2015, 59, 208. 52 Marin E B, Dawson P R. Computer Methods in Applied Mechanics and Engineering, 1998, 165, 1. 53 Roters F, Diehl M, Shanthraj P, et al. Computational Materials Science, 2019, 158, 420. 54 Yaghoobi M, Ganesan S, Sundar S, et al. Computational Materials Science, 2019, 169, 109078. 55 Quey R, Dawson P R, Barbe F. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 1729. 56 Groeber M A, Jackson M A. Integrating Materials and Manufacturing Innovation, 2014, 3(1), 56. 57 Motaman S A H, Haase C. International Journal of Plasticity, 2021, 140, 102941. 58 Liu X B, Xu Q Y, Jing T, et al. Transactions of Nonferrous Metals Society of China, 2008, 18, 944. 59 Tian F J, Li Z G, Song J X. Journal of Alloys and Compounds, 2016, 676, 524. 60 Vrugt J A. Environmental Modelling & Software, 2016, 75, 273. 61 Tu Y, Leen S B, Harrison N M. Proceedings of the Institution of Mecha-nical Engineers, Part L:Journal of Materials:Design and Applications, 2021, 235(8), 1901. 62 Zhuang W M, Sun J, Xie D X. Journal of Mechanical Engineering, 2022, 58(4), 41 (in Chinese). 庄蔚敏, 孙健, 解东旋. 机械工程学报, 2022, 58(4), 41. 63 Ren S Y, Wang K, Liu B C, et al. Aeronautical Science & Technology, 2019, 30(9), 81 (in Chinese). 任斯远, 王凯, 刘斌超, 等. 航空科学技术, 2019, 30(9), 81. 64 Barbe F, Decker L, Jeulin D, et al. International Journal of Plasticity, 2001, 17, 513. 65 Barbe F, Quey R. International Journal of Plasticity, 2011, 27, 823. 66 Chong Y, Tsuji N. Materials Science Forum, 2017, 879, 344. 67 Geng Y, Harrison N. Materials Science & Engineering A, 2020, 773, 138736. 68 Bandyopadhyay R, Prithivirajan V, Sangid M D. Journal of Orthomolecular Medicine, 2019, 71(8), 2612. 69 Quey R, Renversade L. Computer Methods in Applied Mechanics and Engineering, 2018, 330, 308. 70 Kergaßner A, Mergheim J, Steinmann P. Computers and Mathematics with Applications, 2019, 78(7), 2338. 71 Kergaßner A, Mergheim J, Steinmann P. Proceedings in Applied Mathematics & Mechanics, 2016, 16(1), 355. 72 Lindroos M, Pinomaa T, Antikainen A, et al. Additive Manufacturing, 2021, 38, 101819. 73 Branco D C, Vasconcelos L S, An L, et al. Journal of the Mechanics and Physics of Solids, 2021, 151, 104391. 74 Fatemi A, Molaei R, Sharifimehr S, et al. International Journal of Fatigue, 2017, 99, 187. 75 Barrett T J, Savage D J, Ardeljan M, et al. Computational Materials Science, 2018, 141, 269. 76 Park H K, Jung J, Kim H S. Computational Materials Science, 2017, 126, 265. 77 Jahedi M, Ardeljan M, Beyerlein I J, et al. Journal of Applied Physics, 2015, 117(21), 214309. 78 Zhang X X, Andrä H. Computational Materials Science, 2021, 200, 110832. 79 Saha S, Kafka O L, Lu Y, et al. Integrating Materials and Manufactu-ring Innovation, 2021, 10(3), 360. 80 Kergaßner A, Koepf J A, Markl M, et al. Journal of Materials Enginee-ring and Performance, 2021, 30(7), 5235. 81 Zhang Z, Ge P, Tan Z J, et al. Ordnance Material Science and Enginee-ring, 2018, 41(1), 1 (in Chinese). 张昭, 葛芃, 谭治军, 等. 兵器材料科学与工程, 2018, 41(1), 1. 82 Britton T B, Jiang J, Guo Y, et al. Materials Characterization, 2016, 117, 113. 83 Li D F, Golden B J, O’Dowd N P. Acta Materialia, 2014, 80, 445. 84 Li D F, Barrett R A, O’Donoghue P E, et al. Journal of the Mechanics and Physics of Solids, 2017, 101, 44. 85 Liu T G, Xia S, Bai Q, et al. Acta Metallurgica Sinica, 2018, 54(6), 868. 刘廷光, 夏爽, 白琴, 等. 金属学报, 2018, 54(6), 868. 86 Kohar C P, Brahme A, Hekmat F, et al. Thin-Walled Structures, 2019, 140, 516. 87 Brahme A, Alvi M H, Saylor D, et al. Scripta Materialia, 2006, 55(1), 75. 88 Biswas A, Prasad M R G, Vajragupta N, et al. Advanced Engineering Materials, 2020, 22(5), 1901416. 89 Prasad M R G, Vajragupta N, Hartmaier A. Journal of Open Source Software, 2019, 4(43), 1732. 90 Ye C, Chen J, Xu M, et al. Materials Science & Engineering A, 2016, 662, 385. 91 Han F, Roters F, Raabe D. International Journal of Plasticity, 2020, 125, 97. 92 Ostoja-Starzewski M, Du X, Khisaeva Z F, et al. International Journal for Multiscale Computational Engineering, 2007, 5(2), 73. 93 El Moumen A, Kanit T, Imad A. European Journal of Mechanics/A Solids, 2021, 86, 104181. 94 Lim H, Battaile C C, Bishop J E, et al. International Journal of Plasticity, 2019, 121, 101. 95 Mirkhalaf S M, Andrade Pires F M, Simoes R. Finite Elements in Analysis and Design, 2016, 119, 30. 96 Bouchedjra M, Kanit T, Boulemia C, et al. European Journal of Mecha-nics/A Solids, 2018, 72, 1. 97 Saunders R, Butler C, Michopoulos J, et al. Computational Materials, 2021, 7(1), 1. 98 Sweeney C A, Vorster W, Leen S B, et al. Journal of the Mechanics and Physics of Solids, 2013, 61(5), 1224. 99 Zabihyan R, Mergheim J, Javili A, et al. International Journal of Solids and Structures, 2018, 130-131, 105. 100 Farukh F, Zhao L G, Jiang R, et al. Computational Materials Science, 2016, 111, 395. 101 Zhang M, Zhang J, Mcdowell D L. International Journal of Plasticity, 2007, 23(8), 1328. 102 Jiang M, Alzebdeh K, Jasiuk I, et al. Acta Mechanica, 2001, 148, 63. 103 Tang H, Huang H, Liu C, et al. International Journal of Mechanical Sciences, 2020, 194(15), 106185. 104 Luo Z, Zhao Y. Additive Manufacturing, 2018, 21, 318. 105 An N, Yang G, Yang K, et al. Materials Today Communications, 2021, 27, 102307. 106 Yang M, Wang L, Yan W. Computational Materials, 2021, 7(1), 1. 107 Liu P W, Wang Z, Xiao Y H, et al. International Journal of Plasticity, 2020, 128, 102670. 108 Grilli N, Hu D, Yushu D, et al. Computational Mechanics, 2022, 69, 825.