Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22070235-10    https://doi.org/10.11896/cldb.22070235
  金属与金属基复合材料 |
晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用
冯振宇1, 张宏宇1, 马佳威1, 陈琨1,*, 周良道2, 沈培良2, 陈向明3
1 中国民航大学安全科学与工程学院,天津300300
2 上海飞机设计研究院,上海 201210
3 中国飞机强度研究所,西安 710065
Application and Progress of Crystal Plasticity Finite Element Method in the Study of Mechanical Properties in Metal Additive Manufacturing
FENG Zhenyu1, ZHANG Hongyu1, MA Jiawei1, CHEN Kun1,*, ZHOU Liangdao2, SHEN Peiliang2, CHEN Xiangming3
1 College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
2 Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
3 AVIC Aircraft Strength Research Institute,Xi’an 710065,China
下载:  全 文 ( PDF ) ( 41928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 增材制造作为先进制造技术的代表,已被广泛应用于航空航天等高新技术领域。金属增材制造技术的高能量密度、高热和快速冷却等复杂工艺特点使得成形件的微观结构与传统制造技术所得成形件显著不同,这对金属材料力学性能有着重要影响。晶体塑性有限元方法将晶体塑性理论与有限元方法相结合,能够跨尺度分析增材制造金属材料微观结构与力学性能之间的关系,为优化工艺过程提供支撑。本文综述了近年来晶体塑性有限元方法在金属增材制造中的应用,阐述了代表增材制造金属材料微观结构特征的几何模型的建立方法和有限元应用,提出了相关发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯振宇
张宏宇
马佳威
陈琨
周良道
沈培良
陈向明
关键词:  增材制造  晶体塑性  有限元  微观结构  力学性能    
Abstract: Additive manufacturing, as a representative of advanced manufacturing technology, has been widely used in aerospaceand other high-tech fields. Due to the complex processes of high energy density, extreme heating and cooling rates in metal additive manufacturing technology, the microstructure of additively manufactured as-built materials is often obviously different from that produced by traditionally manufactured techno-logy, which has an important impact on the mechanical properties of metal materials. Crystal plasticity finite element method combines the crystal plasticity theory with the finite element method, which can research the relationship between the microstructure and mechanical properties of additively manufactured metallic materials across scales, and provide the strong support for the optimization of additive manufacturing processes. This paper first summarizes recent application of crystal plastic finite element method in metal additive manufacturing, and expounds the establishment method of geometric model, which can represent the microstructure characteristics of additively manufactured metallic materials, and the application of finite element method, finally points out the development trend.
Key words:  additive manufacturing    crystal plasticity    finite element    microstructure    mechanical property
发布日期:  2024-01-16
ZTFLH:  TG113  
  TH16  
基金资助: 国家重点研发计划(2018YFB1106300)
通讯作者:  陈琨,2014年11月毕业于南京航空航天大学,获得工学博士学位。于2015年3月在中国民航大学工作至今,主要从事航空器结构强度适航技术研究。cknuaa@gmail.com   
作者简介:  冯振宇,中国民航大学安全科学与工程学院教授、博士研究生导师。1995年获西北工业大学固体力学工学博士学位。长期从事飞机结构坠撞安全与乘员保护、飞机结构损伤容限与疲劳评定、新型航空材料适航要求与符合性方法研究等,主持或参加科研项目20余项,发表论文100余篇。
引用本文:    
冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
FENG Zhenyu, ZHANG Hongyu, MA Jiawei, CHEN Kun, ZHOU Liangdao, SHEN Peiliang, CHEN Xiangming. Application and Progress of Crystal Plasticity Finite Element Method in the Study of Mechanical Properties in Metal Additive Manufacturing. Materials Reports, 2024, 38(1): 22070235-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070235  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22070235
1 Gu D D, Zhang H M, Chen H Y, et al. Chinese Journal of Lasers, 2020, 47(5), 32 (in Chinese).
顾冬冬, 张红梅, 陈洪宇, 等. 中国激光, 2020, 47(5), 32.
2 Chang K, Liang E Q, Zhang R, et al. Materials Reports, 2021, 35(3), 3176 (in Chinese).
常坤, 梁恩泉, 张韧, 等. 材料导报, 2021, 35(3), 3176.
3 Zhu J H, Cao Y F, Zhai X Y, et al. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12), 3181 (in Chinese).
朱继红, 曹吟锋, 翟星玥, 等. 力学学报, 2021, 53(12), 3181.
4 Lian Y P, Wang P D, Gao J, et al. Advances in Mechanics, 2021, 51(3), 648 (in Chinese).
廉艳平, 王潘丁, 高杰, 等. 力学进展, 2021, 51(3), 648.
5 Tu Y H, Liu Z Z, Carneiro L, et al. Materials & Design, 2022, 213, 110345.
6 Gu D D, Shi X Y, Poprawe R, et al. Science, 2021, 372(6545), 1478.
7 Van Nuland T F W, Van Dommelen J A W, Geers M G D. Mechanics of Materials, 2021, 153, 103664.
8 Kumar M S, Javidrad H R, Shanmugam R, et al. Silicon, 2022, 14(12), 7083.
9 Liu Z, Zhao Z B, Liu J R, et al. Materials Science & Engineering A, 2020, 798, 140093.
10 Poulin J R, Brailovski V, Terriault P. International Journal of Fatigue, 2018, 116, 634.
11 Yu C F, Zhao C C, Zhang Z F, et al. Acta Metallurgica Sinica, 2020, 56(5), 683 (in Chinese).
余晨帆, 赵聪聪, 张哲峰, 等. 金属学报, 2020, 56(5), 683.
12 Liu J, Xiong W, Behera A, et al. International Journal of Solids and Structures, 2017, 112(1), 35.
13 Bronkhorst C A, Mayeur J R, Livescu V, et al. International Journal of Plasticity, 2019, 118, 70.
14 Bajaj P, Hariharan A, Kini A, et al. Materials Science & Engineering A, 2020, 772, 138633.
15 Bayoumy D, Schliephake D, Dietrich S, et al. Materials and Design, 2021, 198, 109317.
16 Wang Y, Liu Y M, Liu J W, et al. Powder Metallurgy Technology, 2022, 40(2), 179 (in Chinese).
王岩, 刘雨萌, 刘江伟, 等. 粉末冶金技术, 2022, 40(2), 179.
17 Liu C H, Chen L H, Ma P P, et al. Journal of Plasticity Engineering, 2021, 28(5), 17 (in Chinese).
刘春辉, 陈龙辉, 马培培, 等. 塑性工程学报. 2021, 28(5), 17.
18 Veiga F, Del Val A G, Suarez A, et al. Materials, 2020, 12(3), 766.
19 Zhang W, Hu Y, Ma X, et al. International Journal of Fatigue, 2021, 145, 106109.
20 Zhang J, Li J, Wu S, et al. International Journal of Fatigue, 2022, 155, 106577.
21 Azhari F, Wallbrink C, Sterjovski Z, et al. International Journal of Plasticity, 2022, 148, 103127.
22 Ou C Y, Voothaluru R, Liu R C. Crystals, 2020, 10(10), 905.
23 Wang Y Y, Su Z L. Theoretical and Applied Fracture Mechanics, 2021, 111, 102849.
24 Wang L L, Xue J X, Wang Q. Materials Science & Engineering A, 2019, 751, 183.
25 Taylor G I. Institute of Metals, 1938, 62, 307.
26 Taylor G I. In:Stephen Timoshenko 60th Anniversary Volume. New York, 1938, pp. 218.
27 Schmid E, Boas W. Plasticity of crystals, Chemical Rubber Company Press, UK, 1935.
28 Mandel J. International Journal of Solids and Structures, 1965, 1(3), 273.
29 Hill R. Journal of the Mechanics and Physics of Solids, 1966, 14(2), 95.
30 Peirce D, Asaro R J, Needleman A. Acta Metallurgica, 1982, 30(6), 1087.
31 Hill R, Rice J R. Journal of the Mechanics and Physics of Solids, 1972, 20(6), 401.
32 Asaro R J, Rice J R. Journal of the Mechanics and Physics of Solids, 1977, 25(5), 309.
33 Asaro R J. Advances in Applied Mechanics, 1983, 23, 1.
34 Asaro R J. Journal of Applied Mechanics, 1983, 50, 921.
35 Asaro R J, Needleman A. Acta Metallurgica, 1985, 33(6), 923.
36 Bassani J L, Wu T Y. Proceedings of the Royal Society A-Mathematical and Physical Sciences, 1991, 435, 21.
37 Wu T Y, Bassani J L, Laird C. Proceedings of the Royal Society A-Mathematical and Physical Sciences, 1991, 435, 1.
38 Roters F, Eisenlohr P, Hantcherli L, et al. Acta Materialia, 2010, 58, 1152.
39 Zhang H M, Xu S, Li Q, et al. Journal of Plasticity Engineering, 2020, 27(5), 12 (in Chinese).
章海明, 徐帅, 李倩, 等. 塑性工程学报, 2020, 27(5), 12.
40 Anand L, Kothari M. Journal of the Mechanics and Physics of Solids, 1996, 44(4), 525.
41 Kalidindi S R, Bronkhorst C A, Anand L. Journal of the Mechanics and Physics of Solids, 1992, 40(3), 537.
42 Voce E. Institute of Metals, 1948, 74, 537.
43 Rajan A N R, Krochmal M, Wegener T, et al. Materials, 2022, 15(16), 5562.
44 Branco D C, Vasconcelos L S, An L, et al. Journal of the Mechanics and Physics of Solids, 2021, 151, 104391.
45 Li Y Y, Jiang W. Journal of Mechanical Engineering, 2021, 57(2), 97 (in Chinese).
李银银, 蒋玮. 机械工程学报, 2021, 57(2), 97.
46 Tekumalla S, Selvarajou B, Raman S, et al. Materials Science & Engineering A, 2022, 833, 142493.
47 Shakil S I, Dharmendra C, Amirkhiz B S, et al. Materials Science & Engineering A, 2020, 792, 139773.
48 Gorji M B, Tancogne-Dejean T, Mohr D. Acta Materialia, 2018, 148(15), 442.
49 Van Nuland T F W, Van Dommelen J A W, Geers M G D. Mechanics of Materials, 2021, 153, 103664.
50 Huang Y G. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Ph. D. Thesis, Harvard University, USA, 1991.
51 Martínez-Pañeda E, Betegón C. International Journal of Solids and Structures, 2015, 59, 208.
52 Marin E B, Dawson P R. Computer Methods in Applied Mechanics and Engineering, 1998, 165, 1.
53 Roters F, Diehl M, Shanthraj P, et al. Computational Materials Science, 2019, 158, 420.
54 Yaghoobi M, Ganesan S, Sundar S, et al. Computational Materials Science, 2019, 169, 109078.
55 Quey R, Dawson P R, Barbe F. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 1729.
56 Groeber M A, Jackson M A. Integrating Materials and Manufacturing Innovation, 2014, 3(1), 56.
57 Motaman S A H, Haase C. International Journal of Plasticity, 2021, 140, 102941.
58 Liu X B, Xu Q Y, Jing T, et al. Transactions of Nonferrous Metals Society of China, 2008, 18, 944.
59 Tian F J, Li Z G, Song J X. Journal of Alloys and Compounds, 2016, 676, 524.
60 Vrugt J A. Environmental Modelling & Software, 2016, 75, 273.
61 Tu Y, Leen S B, Harrison N M. Proceedings of the Institution of Mecha-nical Engineers, Part L:Journal of Materials:Design and Applications, 2021, 235(8), 1901.
62 Zhuang W M, Sun J, Xie D X. Journal of Mechanical Engineering, 2022, 58(4), 41 (in Chinese).
庄蔚敏, 孙健, 解东旋. 机械工程学报, 2022, 58(4), 41.
63 Ren S Y, Wang K, Liu B C, et al. Aeronautical Science & Technology, 2019, 30(9), 81 (in Chinese).
任斯远, 王凯, 刘斌超, 等. 航空科学技术, 2019, 30(9), 81.
64 Barbe F, Decker L, Jeulin D, et al. International Journal of Plasticity, 2001, 17, 513.
65 Barbe F, Quey R. International Journal of Plasticity, 2011, 27, 823.
66 Chong Y, Tsuji N. Materials Science Forum, 2017, 879, 344.
67 Geng Y, Harrison N. Materials Science & Engineering A, 2020, 773, 138736.
68 Bandyopadhyay R, Prithivirajan V, Sangid M D. Journal of Orthomolecular Medicine, 2019, 71(8), 2612.
69 Quey R, Renversade L. Computer Methods in Applied Mechanics and Engineering, 2018, 330, 308.
70 Kergaßner A, Mergheim J, Steinmann P. Computers and Mathematics with Applications, 2019, 78(7), 2338.
71 Kergaßner A, Mergheim J, Steinmann P. Proceedings in Applied Mathematics & Mechanics, 2016, 16(1), 355.
72 Lindroos M, Pinomaa T, Antikainen A, et al. Additive Manufacturing, 2021, 38, 101819.
73 Branco D C, Vasconcelos L S, An L, et al. Journal of the Mechanics and Physics of Solids, 2021, 151, 104391.
74 Fatemi A, Molaei R, Sharifimehr S, et al. International Journal of Fatigue, 2017, 99, 187.
75 Barrett T J, Savage D J, Ardeljan M, et al. Computational Materials Science, 2018, 141, 269.
76 Park H K, Jung J, Kim H S. Computational Materials Science, 2017, 126, 265.
77 Jahedi M, Ardeljan M, Beyerlein I J, et al. Journal of Applied Physics, 2015, 117(21), 214309.
78 Zhang X X, Andrä H. Computational Materials Science, 2021, 200, 110832.
79 Saha S, Kafka O L, Lu Y, et al. Integrating Materials and Manufactu-ring Innovation, 2021, 10(3), 360.
80 Kergaßner A, Koepf J A, Markl M, et al. Journal of Materials Enginee-ring and Performance, 2021, 30(7), 5235.
81 Zhang Z, Ge P, Tan Z J, et al. Ordnance Material Science and Enginee-ring, 2018, 41(1), 1 (in Chinese).
张昭, 葛芃, 谭治军, 等. 兵器材料科学与工程, 2018, 41(1), 1.
82 Britton T B, Jiang J, Guo Y, et al. Materials Characterization, 2016, 117, 113.
83 Li D F, Golden B J, O’Dowd N P. Acta Materialia, 2014, 80, 445.
84 Li D F, Barrett R A, O’Donoghue P E, et al. Journal of the Mechanics and Physics of Solids, 2017, 101, 44.
85 Liu T G, Xia S, Bai Q, et al. Acta Metallurgica Sinica, 2018, 54(6), 868.
刘廷光, 夏爽, 白琴, 等. 金属学报, 2018, 54(6), 868.
86 Kohar C P, Brahme A, Hekmat F, et al. Thin-Walled Structures, 2019, 140, 516.
87 Brahme A, Alvi M H, Saylor D, et al. Scripta Materialia, 2006, 55(1), 75.
88 Biswas A, Prasad M R G, Vajragupta N, et al. Advanced Engineering Materials, 2020, 22(5), 1901416.
89 Prasad M R G, Vajragupta N, Hartmaier A. Journal of Open Source Software, 2019, 4(43), 1732.
90 Ye C, Chen J, Xu M, et al. Materials Science & Engineering A, 2016, 662, 385.
91 Han F, Roters F, Raabe D. International Journal of Plasticity, 2020, 125, 97.
92 Ostoja-Starzewski M, Du X, Khisaeva Z F, et al. International Journal for Multiscale Computational Engineering, 2007, 5(2), 73.
93 El Moumen A, Kanit T, Imad A. European Journal of Mechanics/A Solids, 2021, 86, 104181.
94 Lim H, Battaile C C, Bishop J E, et al. International Journal of Plasticity, 2019, 121, 101.
95 Mirkhalaf S M, Andrade Pires F M, Simoes R. Finite Elements in Analysis and Design, 2016, 119, 30.
96 Bouchedjra M, Kanit T, Boulemia C, et al. European Journal of Mecha-nics/A Solids, 2018, 72, 1.
97 Saunders R, Butler C, Michopoulos J, et al. Computational Materials, 2021, 7(1), 1.
98 Sweeney C A, Vorster W, Leen S B, et al. Journal of the Mechanics and Physics of Solids, 2013, 61(5), 1224.
99 Zabihyan R, Mergheim J, Javili A, et al. International Journal of Solids and Structures, 2018, 130-131, 105.
100 Farukh F, Zhao L G, Jiang R, et al. Computational Materials Science, 2016, 111, 395.
101 Zhang M, Zhang J, Mcdowell D L. International Journal of Plasticity, 2007, 23(8), 1328.
102 Jiang M, Alzebdeh K, Jasiuk I, et al. Acta Mechanica, 2001, 148, 63.
103 Tang H, Huang H, Liu C, et al. International Journal of Mechanical Sciences, 2020, 194(15), 106185.
104 Luo Z, Zhao Y. Additive Manufacturing, 2018, 21, 318.
105 An N, Yang G, Yang K, et al. Materials Today Communications, 2021, 27, 102307.
106 Yang M, Wang L, Yan W. Computational Materials, 2021, 7(1), 1.
107 Liu P W, Wang Z, Xiao Y H, et al. International Journal of Plasticity, 2020, 128, 102670.
108 Grilli N, Hu D, Yushu D, et al. Computational Mechanics, 2022, 69, 825.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[5] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[6] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[7] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[8] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[9] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[10] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[11] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[12] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[13] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[14] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[15] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed