Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22070217-7    https://doi.org/10.11896/cldb.22070217
  无机非金属及其复合材料 |
附加用水量对再生砂混凝土工作性和力学性能的影响
李北星*, 陈鹏博, 殷实, 易浩
武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
Effect of Additional Water Amount on the Workability and Mechanical Properties of Concrete with Recycled Fine Aggregates
LI Beixing*, CHEN Pengbo, YIN Shi, YI Hao
State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 6515KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生砂掺量和附加用水量对新拌和硬化再生砂混凝土的性能有重要影响。本工作制备了再生砂掺量(γRFA)为30%、50%、70%、100%(质量分数,下同),附加用水量补偿系数(kwa)为0.6、0.75、0.9、1.0的16组再生砂混凝土,测试了这些再生砂混凝土的工作性(坍落度、扩展度与扩展时间)与力学性能(抗压、劈拉强度与弹性模量),分析了kwa和γRFA对再生砂混凝土性能的影响规律,获得了kwa的合理取值范围。结果表明,随着kwa的降低,再生砂混凝土的工作性下降,力学性能增大;γRFA对混凝土力学性能的影响与附加用水量有关,在中低附加用水量(kwa=0.6、0.75)条件下,随着γRFA的增加,再生砂混凝土的部分力学性能指标增大且其值高于天然砂混凝土,而在高附加用水量(kwa=0.9、1.0)下,再生砂混凝土的力学性能随着γRFA的增加呈线性降低。γRFA低于50%对再生砂混凝土力学性能的影响较小,kwa值在0.75~0.9范围变化对再生砂混凝土工作性能与力学性能的影响均相对较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李北星
陈鹏博
殷实
易浩
关键词:  再生混凝土  再生砂  附加用水量  工作性能  力学性能    
Abstract: The replacement ratio of recycled fine aggregate (RFA) and amount of additional water have significant impact on the performance of both fresh and hardened recycled concrete. 16 groups of concrete specimens were prepared with different RFA replacement ratios (γRFA) of 30%, 50%, 70%, and 100% and compensation factors of additional water consumption (kwa) of 0.6, 0.75, 0.9, and 1.0, and the workability (slump, slump flow and flow time) and mechanical properties (compressive strength, flexural strength and modulus of elasticity) of these RFA concretes were tested. According to the test results, the influence law of the above kwaand γRFA parameters on the properties of the RFA concretes was discussed, and a reasonable kwa values range was obtained. The results show that the workability of RFA concrete decreases and the mechanical properties increase as kwa decreases;the influence of γRFAon the mechanical properties of the RFA concrete are related to the additional water consumption. Under the conditions of low and medium additional water consumption (kwa=0.6, 0.75), some mechanical properties of RFA concrete increase with the increase of γRFAand their values are higher than those of natural sand concrete. Under the conditions of high additional water consumption (kwa=0.9, 1.0), the mechanical properties of RFA concrete decrease linearly with the increase of γRFA. The γRFA less than 50% has little effect on the mechanical properties of RFA concrete, and the workability and mechanical properties of RFA concrete are little affected by the variation of γRFA value ranged from 0.75 to 0.9.
Key words:  recycled concrete    recycled fine aggregate    amount of additional water    workability    mechanical property
发布日期:  2024-01-16
ZTFLH:  TU528.01  
基金资助: 国家重点研发计划课题(2020YFC1909904)
通讯作者:  李北星,武汉理工大学硅酸盐建筑材料国家重点实验室教授、博士研究生导师。1992年7月、1995年6月、1998年7月于武汉工业大学硅酸盐工程、无机非金属材料和材料学专业先后获得工学学士、硕士和博士学位。目前主要研究领域为水泥混凝土材料、固废资源化利用和道桥工程材料。发表学术论文260余篇(其中SCI、EI和ISTP三大检索论文100余篇),出版专著2部、教材2部,获授权国家发明专利13件。libx0212@126.com   
引用本文:    
李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
LI Beixing, CHEN Pengbo, YIN Shi, YI Hao. Effect of Additional Water Amount on the Workability and Mechanical Properties of Concrete with Recycled Fine Aggregates. Materials Reports, 2024, 38(1): 22070217-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070217  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22070217
1 Silva R V, De Brito J, Dhir R K. Construction and Building Materials, 2014, 65, 201.
2 De Juan M S, Gutiérrez P A. Construction and Building Materials, 2009, 23(2), 872.
3 Evangelista L, De Brito J. European Journal of Environmental and Civil Engineering, 2014, 18(2), 129.
4 Sosa M E, Villagran Z Y, Zega C J. Construction and Building Mate-rials, 2021, 313, 1.
5 Yaprak H, Aruntas H Y, Demir I, et al. International Journal of Physical sciences, 2011, 6(10), 2455.
6 Cartuxo F, De Brito J, Evangelista L, et al. Construction and Building Materials, 2015, 89, 36.
7 Corinaldesi V, Moriconi G. Construction and Building Materials, 2009, 23(1), 289.
8 Leite M B, do Filho F, Lima P R L. Materials and Structures, 2013, 46(10), 1765.
9 Li Z, Liu J P, Xiao J Z, et al. Construction and Building Materials, 2019, 197, 30.
10 De Andrade G P, De Castro P G, Pepe M, et al. Construction and Building Materials, 2020, 252, 119091
11 Ferreira L, De Brito J, Barra M. Magazine of Concrete Research, 2011, 63(8), 617.
12 De Oliveira M B, Vazquez E. Waste Management, 1996, 16 (1-3), 113.
13 Poon C S, Shui Z H, Lam L, et al. Cement and Concrete Research, 2004, 34(1), 31.
14 Kou S C, Poon C S. Cement and Concrete Composites, 2009, 31(9), 622.
15 Pereira P, Evangelista L, De Brito J. Construction and Building Mate-rials, 2012, 28(1), 722.
16 Behera M, Minocha A K, Bhattacharyya S K. Construction and Building Materials, 2019, 228, 116819. 1.
17 Department of Housing and Urban Rural Development of Shaanxi Provincial. Technical specification for recycled aggregate pumping concrete, DBJ 61/T155-2019 (in Chinese).
陕西省住房和城乡建设厅. 再生骨料泵送混凝土应用技术规程, DBJ 61/T155-2019.
18 Tam V W Y, Gao X F, Tam C M. Cement and Concrete Research, 2005, 35(6), 1195.
19 Fan C C, Huang R, Hwang H, et al. Construction and Building Mate-rials, 2016, 112, 708.
20 Yang K H, Chung H S, Ashour A F. ACI Materials Journal, 2008, 105(3), 289.
21 Poon C S, Shui Z H, Lam L, et al. Cement and Concrete Research, 2004, 34(1), 31.
22 Ajdukiewicz A, Kliszczewicz A. Cement and Concrete Composites, 2002, 24(2), 269.
23 Evangelista L, De Brito J. Cement and Concrete Composites, 2007, 29(5), 397.
24 Pedro D, De Brito J, Evangelista L. Construction and Building Mate-rials, 2017, 154, 294.
25 Nie L W, Han G Y, Teng Y C. Concrete, 2017(11), 118 (in Chinese).
聂立武, 韩古月, 滕毓晨. 混凝土, 2017(11), 118.
26 Hafez H, Kurda R, Kurda R, et al. Applied Sciences, 2020, 10(3), 1018.
27 Cabral A E B, Schalch V, Dal Molin D C C, et al. Construction and Building Materials, 2010, 24(4), 421.
28 Gupta A, Mandal S, Ghosh S. International Journal of Civil & Structural Engineering, 2011, 2(1), 292.
29 Hassanean Y A, Rashwan M M, Assaf K A, et al. Journal of Enginee-ring Sciences, 2014, 42(1), 50.
30 Quattrone M, Cazacliu B, Angulo S C, et al. Construction and Building Materials, 2016, 123, 690.
31 Yacoub A, Djerbi A, Fen-Chong T. Construction and Building Materials, 2018, 158, 464.
32 Belin P, Habert G, Thiery M, et al. Materials and Structures, 2014, 47(9), 1451.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[4] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[5] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[9] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[10] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[11] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[12] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[13] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[14] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[15] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed