Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23100101-13    https://doi.org/10.11896/cldb.23100101
  先进有色金属材料加工及性能调控 |
选区激光熔化铝合金及其复合材料的研究进展
许玉婷, 李玉泽*, 王建元
西北工业大学物理科学与技术学院,西安 710129
Research Progress of Selective Laser Melting of Aluminum Alloy and Composites
XU Yuting, LI Yuze*, WANG Jianyuan
School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
下载:  全 文 ( PDF ) ( 76508KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 颗粒增强铝基复合材料因其高比强度、比刚度及优异的耐腐蚀性能等特点,在航空航天等领域应用前景广阔。选区激光熔化技术(SLM)为其提供了一种高效、经济、绿色的制备方式,但该技术对工艺控制水平要求极高,成形过程中粉末构成、激光功率、扫描速度及设备条件等因素对成形产品组织和性能的影响巨大。本文介绍了SLM的基本原理和各个工艺参数对熔池性能的影响,归纳总结了铝合金和铝基复合材料熔池的形成过程,讨论了SLM过程的组织演化和相关参数及增强颗粒等因素对微观组织和性能演化的影响,另外还专门介绍了新兴的外加物理场辅助的增材制造技术。最后,分析了SLM技术目前存在的问题,并展望了未来研究的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许玉婷
李玉泽
王建元
关键词:  增材制造  选区激光熔化  关键参数  铝合金  铝基复合材料    
Abstract: Particle reinforced aluminum matrix composites have the characteristics of high specific strength, specific stiffness and excellent corrosion resistance. It has broad application prospects in aerospace and other fields. Selective laser melting(SLM) technology provides an efficient, economical and green fabrication method for it. However, the technology has extremely high requirements on the level of process control. During the forming process, factors such as powder composition, laser power, scanning speed and equipment conditions have a great influence on the microstructure and properties of the formed products. In this paper, the basic principle of selective laser melting and the influence of various process parameters on the performance of molten pool are introduced. The formation process of molten pool of aluminum alloy and aluminum matrix composites is summarized. The microstructure evolution of selective laser melting process and the influence of related parameters and reinforced particles on the evolution of microstructure and properties are discussed. Additionally, the emerging additive manufacturing technologies assisted by an applied physical field are specifically presented. Finally, the current problems of SLM technology are analysed and future research trends are envisaged.
Key words:  additive manufacturing    selective laser melting    key parameter    aluminum alloy    aluminum matrix composites
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG113  
基金资助: 国家自然科学基金(52101051;52130405);陕西省重点研发计划(2023-YBGY-439)
通讯作者:  * 李玉泽,西北工业大学物理科学与技术学院副教授、硕士研究生导师。2009年河北工业大学材料科学与工程专业本科毕业,2015年中国科学院金属研究所材料加工专业博士毕业(硕博连读),2020年到西北工业大学工作至今。目前主要从事轻质合金及复合材料超常制备、增材制造等方面的研究工作。发表论文20余篇,包括Materials Science & Engineering A、Journal of Alloys and Compounds、Journal of Materials Processing Technology等。yzli@nwpu.edu.cn   
作者简介:  许玉婷,2022年于西安工业大学光电信息学院获得光电信息科学与工程专业工学学士学位,现为西北工业大学2022级物理科学与技术学院材料与化工专业硕士研究生,在李玉泽副教授的指导下进行研究,目前主要研究领域为激光增材制造铝基复合材料。
引用本文:    
许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
XU Yuting, LI Yuze, WANG Jianyuan. Research Progress of Selective Laser Melting of Aluminum Alloy and Composites. Materials Reports, 2024, 38(15): 23100101-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100101  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23100101
1 Yang Q, Lu Z L, Huang F X, et al. Aeronautical Manufacturing Technology, 2016(12), 26 (in Chinese).
杨强, 鲁中良, 黄福享, 等. 航空制造技术, 2016(12), 26.
2 Liang X W. Study on selective laser melting forming process and microstructure properties of ZL205A aluminum alloy powder. Master’s Thesis, Nanchang Hangkong University, China, 2017 (in Chinese).
梁小文. ZL205A铝合金粉末的选区激光熔化成形工艺及其组织性能研究. 硕士学位论文, 南昌航空大学, 2017.
3 Li W, Li S, Liu J, et al. Materials Science and Engineering:A, 2016, 663, 116.
4 Chen B, Moon S K, Yao X, et al. Scripta Materialia, 2017, 141, 45.
5 Shabani M, Paydar M H, Zamiri R, et al. Journal of Materials Research and Technology, 2016, 5(1), 5.
6 Noriko R, Wang W, Khamis E, et al. Materials & Design (1980-2015), 2015, 65, 417.
7 Lu Q, Ou Y, Zhang P, et al. Materials Science and Engineering:A, 2022, 858, 144163.
8 Tradowsky U, White J, Ward R M, et al. Materials & Design, 2016, 105, 212.
9 Wang P, Gammer C, Brenne F, et al. Composites Part B:Engineering, 2018, 147, 162.
10 Li X P, Ji G, Chen Z, et al. Acta Materialia, 2017, 129, 183.
11 Ma R L, Peng C Q, Wang R C, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(12), 2773 (in Chinese).
马如龙, 彭超群, 王日初, 等. 中国有色金属学报, 2020, 30(12), 2773.
12 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Additive Manufacturing, 2014, 1-4, 77.
13 Yadroitsev I, Yadroitsava I, Bertrand P, et al. Rapid Prototyping Journal, 2012, 18(3), 201.
14 Lam L P, Zhang D Q, Liu Z H, et al. Virtual and Physical Prototyping, 2015, 10(4), 207.
15 Thijs L, Kempen K, Kruth J P, et al. Acta Materialia, 2013, 61(5), 1809.
16 Li W, Li S, Liu J, et al. Materials Science and Engineering:A, 2016, 663, 116.
17 Manfredi D, Calignano F, Krishnan M, et al. Materials, 2013, 6(3), 856.
18 Yadroitsev I, Gusarov A, Yadroitsava I, et al. Journal of Materials Processing Technology, 2010, 210(12), 1624.
19 Dai D H, Gu D D. International Journal of Machine Tools and Manufacture, 2016, 100, 14.
20 Wei P, Wei Z Y, Chen Z, et al. Applied Physics A, 2017, 123(8), 540.
21 Wang X C. Microstructure and properties of selective laser melting AlSi10Mg alloy. Master’s Thesis, Anhui University of Technology, China, 2017 (in Chinese).
王学才. 选择性激光熔化AlSi10Mg合金组织与性能研究. 硕士学位论文, 安徽工业大学, 2017.
22 Yu T B, Song B X, Xi W C, et al. Journal of Northeastern University(Natural Science Edition), 2019, 40(4), 537 (in Chinese).
于天彪, 宋博学, 郗文超, 等. 东北大学学报(自然科学版), 2019, 40(4), 537.
23 Wang D, Yang Y Q, Huang Y L, et al. Journal of South China University of Technology(Natural Science Edition), 2010, 38(6), 107 (in Chinese).
王迪, 杨永强, 黄延禄, 等. 华南理工大学学报(自然科学版), 2010, 38(6), 107.
24 Lalas C, Tsirbas K, Salonitis K, et al. The International Journal of Advanced Manufacturing Technology, 2007, 32(1-2), 34.
25 Kempen K, Thijs L, Yasa E, et al. In:22nd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, USA, 2011.
26 Xiang Z W, Yin M, Yin G F, et al. Engineering Science and Technology, 2020, 52(1), 134 (in Chinese).
向召伟, 殷鸣, 殷国富, 等. 工程科学与技术, 2020, 52(1), 134.
27 Bidare P, Bitharas I, Ward R M, et al. Acta Materialia, 2018, 142, 107.
28 Cai Z Y, Liu H J, Wang R C, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(1), 50 (in Chinese).
蔡志勇, 刘海江, 王日初, 等. 中国有色金属学报, 2022, 32(1), 50.
29 Woo Y, Hwang T, Oh I, et al. Advances in Mechanical Engineering, 2019, 11(1), 1687814018822200.
30 Gu D D, Yang Y, Xi L X, et al. Optics & Laser Technology, 2019, 119, 105600.
31 Ansari M J, Nguyen D S, Park H S. Materials, 2019, 12(8), 1272.
32 Li Y, Gu D. Materials & Design, 2014, 63, 856.
33 Loh L E, Chua C K, Yeong W Y, et al. International Journal of Heat and Mass Transfer, 2015, 80, 288.
34 Wu H, Li J, Wei Z, et al. Rapid Prototyping Journal, 2020, 26(5), 871.
35 Yasa E, Deckers J, Kruth J. Rapid Prototyping Journal, 2011, 17(5), 312.
36 Teng B R, Li Z H, Li H Y, et al. Materials Reports, 2022, 36(2), 142 (in Chinese).
滕宝仁, 黎振华, 李淮阳, 等. 材料导报, 2022, 36(2), 142.
37 Rao H, Giet S, Yang K, et al. Materials & Design, 2016, 109, 334.
38 Chen S, Guillemot G, Gandin C A. Acta Materialia, 2016, 115, 448.
39 Li X, Tan W. Computational Materials Science, 2018, 153, 159.
40 Liu S, Zhu H, Peng G, et al. Materials & Design, 2018, 142, 319.
41 Liu X H, Zhao C C, Zhou X, et al. Materials & Design, 2019, 168, 107677.
42 Chen M X, Li X P, Ji G, et al. Applied Sciences, 2017, 7(3), 250.
43 Engin S. Transactions of Nonferrous Metals Society of China, 2020, 30(12), 3183.
44 Nie P, Ojo O A, Li Z. Acta Materialia, 2014, 77, 85.
45 Zhang J, Wu L, Zhang Y, et al. Metal Powder Report, 2019, 74(1), 20.
46 Zhang Y Y. Selective laser melting formation of AlSi10Mg alloy and its composites. Master’s Thesis, Shandong University, China, 2020 (in Chinese).
张玉莹. 激光选区熔化成形AlSi10Mg合金及复合材料的研究. 硕士学位论文, 山东大学, 2020.
47 Gor M, Soni H, Wankhede V A, et al. Materials, 2021, 14(21), 6527.
48 Li R D. Research on the key basic issues in selective laser melting of metallic powder. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2010 (in Chinese).
李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究. 博士学位论文, 华中科技大学, 2010.
49 Xi L X, Gu D D, Guo S, et al. Journal of Materials Research and Technology-Jmr&t, 2020, 9(3), 2611.
50 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Additive Manufacturing, 2014, 1-4, 77.
51 Ni X Q, Kong D C, Wen Y, et al. Powder Metallurgy Technology, 2019, 37(3), 163 (in Chinese).
倪晓晴, 孔德成, 温莹, 等. 粉末冶金技术, 2019, 37(3), 163.
52 Maskery I, Aboulkhair N T, Corfield M R, et al. Materials Characterization, 2016, 111, 193.
53 Wu L Z, Wen Y J, Zhang B C, et al. Powder Metallurgy Technology, 2021, 39(6), 549 (in Chinese).
吴灵芝, 温耀杰, 张百成, 等. 粉末冶金技术, 2021, 39(6), 549.
54 Zeng S H. Research on preparation and selective laser melting of TiB2/AlSi10Mg composite powders. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese).
曾思惠. TiB2/AlSi10Mg复合粉体材料的制备与选区激光熔化成形研究. 硕士学位论文, 华南理工大学, 2020.
55 Zou Y T, Wei Z Y, Du J, et al. Applied Laser, 2016, 36(6), 656 (in Chinese).
邹亚桐, 魏正英, 杜军, 等. 应用激光, 2016, 36(6), 656.
56 Ke Y, Ma P, Ma Y C, et al. Applied Laser, 2019, 39(2), 198 (in Chinese).
柯宇, 马盼, 马永超, 等. 应用激光, 2019, 39(2), 198.
57 Maamoun A H, Xue Y F, Elbestawi M A, et al. Materials, 2018, 11(12), 2343.
58 Xiao Y K, Chen H, Bian Z Y, et al. Journal of Materials Science & Technology, 2022, 109, 254.
59 Huang J G, Ren S B. Materials Reports, 2021, 35(23), 23142 (in Chinese).
黄建国, 任淑彬. 材料导报, 2021, 35(23), 23142.
60 Zhang J L, Song B, Wei Q S, et al. Journal of Materials Science & Technology, 2019, 35(2), 270.
61 Liu X, Zhao C, Zhou X, et al. Materials & Design, 2019, 168, 107677.
62 Chen B, Moon S K, Yao X, et al. Scripta Materialia, 2017, 141, 45.
63 Li W, Li S, Liu J, et al. Materials Science and Engineering:A, 2016, 663, 116.
64 Suryawanshi J, Prashanth K G, Scudino S, et al. Acta Materialia, 2016, 115, 285.
65 Wang P, Eckert J, Prashanth K G, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(8), 2001.
66 Meng C, Cui H C, Lu F G, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(6), 1543.
67 Quested T E, Greer A L, Cooper P S. In:Aluminum alloys, Gregson P J, Harris S J, ed., Zurich-Uetikon, Trans Tech Publications Ltd, 2002, pp.53.
68 Yuan Z. Preparation and characterization of aluminum matrix composites reinforced by micro/nano Al2O3 particles. Master’s Thesis, Taiyuan University of Science and Technology, China, 2016 (in Chinese).
袁铮. 微/纳米Al2O3颗粒增强铝基复合材料的制备与表征. 硕士学位论文, 太原科技大学, 2016.
69 Ye H, Zhang J Q, Huang J Q, et al. Materials Reports, 2019, 33(22), 3789 (in Chinese).
叶寒, 张坚强, 黄俊强, 等. 材料导报, 2019, 33(22), 3789.
70 Thijs L, Kempen K, Kruth J P, et al. Acta Materialia, 2013, 61(5), 1809.
71 Xue C, Yu J K, Zhu X M. Materials & Design, 2011, 32(8), 4225.
72 James S J, Venkatesan K, Kuppan P, et al. Procedia Engineering, 2014, 97, 1018.
73 Zhang M L. Study on strengthening and toughening mechanism of in-situ TiB2/Al-Si composite fabricated by selective laser melting. Master’s Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese).
章敏立. 激光选区熔化原位自生TiB2/Al-Si复合材料强韧化机理研究. 硕士学位论文, 上海交通大学, 2018.
74 Li X P, Ji G, Chen Z, et al. Acta Materialia, 2017, 129, 183.
75 Yan T Q, Tang P J, Chen B Q, et al. Journal of Mechanical Engineering, 2020, 56(24), 96 (in Chinese).
闫泰起, 唐鹏钧, 陈冰清, 等. 机械工程学报, 2020, 56(24), 96.
76 Brodova I G, Chikova O A, Petrova A N, et al. Physics of Metals and Metallography, 2019, 120(11), 1109.
77 Li Y, Gu D, Zhang H, et al. Chinese Journal of Mechanical Engineering, 2020, 33(1), 33.
78 Ke L D, Xue G, Zhu H H, et al. Aerospace Shanghai, 2019, 36(2), 118 (in Chinese).
柯林达, 薛刚, 朱海红, 等. 上海航天, 2019, 36(2), 118.
79 Zou T C, Chen M Y, Mei S Y, et al. Journal of Materials Engineering, 2022, 50(12), 143 (in Chinese).
邹田春, 陈敏英, 梅思远, 等. 材料工程, 2022, 50(12), 143.
80 Guo M, Ye Y, Jiang X, et al. Journal of Materials Engineering and Performance, 2019, 28(11), 6753.
81 Fang N W, Sun L B, Huang L J, et al. Acta Metallurgica Sinica, DOI:10. 11900/0412. 1961. 2022. 00542(in Chinese).
方乃文, 孙徕博, 黄陆军, 等. 金属学报, DOI:10. 11900/0412. 1961. 2022. 00542.
82 Tan C, Li R, Su J, et al. International Journal of Machine Tools and Manufacture, 2023, 189, 104032.
83 Zhu S, Katti I, Qiu D, et al. Materials Science and Engineering:A, 2023, 882, 145486.
84 Bosio F, Phutela C, Ghisi N, et al. Materials Science and Engineering:A, 2023, 879, 145268.
85 Fan W, Tan H, Lin X, et al. Materials & Design, 2018, 160, 1096.
86 Du D, Haley J C, Dong A, et al. Materials & Design, 2019, 181, 107923.
87 Zhang Z, Li J, Cheng T, et al. Virtual and Physical Prototyping, 2023, 18(1), 2161918.
88 Todaro C J, Easton M A, Qiu D, et al. Nature Communications, 2020, 11(1), 142.
89 Zhang C, Chen B, Li H, et al. Ultrasonics, 2023, 135, 107134.
90 Ivanov I A, Dub V S, Karabutov A A, et al. Scientific Reports, 2021, 11(1), 23501.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[3] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[7] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[8] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[9] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[10] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[11] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[12] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[13] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[14] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[15] 宋志起, 赵旭东, 王军, 胡朝晟, 刘永珍, 麻永林. 脉冲磁场孕育处理下A356铝合金凝固组织的演变规律[J]. 材料导报, 2024, 38(13): 22100215-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed