Abstract: Particle reinforced aluminum matrix composites have the characteristics of high specific strength, specific stiffness and excellent corrosion resistance. It has broad application prospects in aerospace and other fields. Selective laser melting(SLM) technology provides an efficient, economical and green fabrication method for it. However, the technology has extremely high requirements on the level of process control. During the forming process, factors such as powder composition, laser power, scanning speed and equipment conditions have a great influence on the microstructure and properties of the formed products. In this paper, the basic principle of selective laser melting and the influence of various process parameters on the performance of molten pool are introduced. The formation process of molten pool of aluminum alloy and aluminum matrix composites is summarized. The microstructure evolution of selective laser melting process and the influence of related parameters and reinforced particles on the evolution of microstructure and properties are discussed. Additionally, the emerging additive manufacturing technologies assisted by an applied physical field are specifically presented. Finally, the current problems of SLM technology are analysed and future research trends are envisaged.
通讯作者:
* 李玉泽,西北工业大学物理科学与技术学院副教授、硕士研究生导师。2009年河北工业大学材料科学与工程专业本科毕业,2015年中国科学院金属研究所材料加工专业博士毕业(硕博连读),2020年到西北工业大学工作至今。目前主要从事轻质合金及复合材料超常制备、增材制造等方面的研究工作。发表论文20余篇,包括Materials Science & Engineering A、Journal of Alloys and Compounds、Journal of Materials Processing Technology等。yzli@nwpu.edu.cn
许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
XU Yuting, LI Yuze, WANG Jianyuan. Research Progress of Selective Laser Melting of Aluminum Alloy and Composites. Materials Reports, 2024, 38(15): 23100101-13.
1 Yang Q, Lu Z L, Huang F X, et al. Aeronautical Manufacturing Technology, 2016(12), 26 (in Chinese). 杨强, 鲁中良, 黄福享, 等. 航空制造技术, 2016(12), 26. 2 Liang X W. Study on selective laser melting forming process and microstructure properties of ZL205A aluminum alloy powder. Master’s Thesis, Nanchang Hangkong University, China, 2017 (in Chinese). 梁小文. ZL205A铝合金粉末的选区激光熔化成形工艺及其组织性能研究. 硕士学位论文, 南昌航空大学, 2017. 3 Li W, Li S, Liu J, et al. Materials Science and Engineering:A, 2016, 663, 116. 4 Chen B, Moon S K, Yao X, et al. Scripta Materialia, 2017, 141, 45. 5 Shabani M, Paydar M H, Zamiri R, et al. Journal of Materials Research and Technology, 2016, 5(1), 5. 6 Noriko R, Wang W, Khamis E, et al. Materials & Design (1980-2015), 2015, 65, 417. 7 Lu Q, Ou Y, Zhang P, et al. Materials Science and Engineering:A, 2022, 858, 144163. 8 Tradowsky U, White J, Ward R M, et al. Materials & Design, 2016, 105, 212. 9 Wang P, Gammer C, Brenne F, et al. Composites Part B:Engineering, 2018, 147, 162. 10 Li X P, Ji G, Chen Z, et al. Acta Materialia, 2017, 129, 183. 11 Ma R L, Peng C Q, Wang R C, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(12), 2773 (in Chinese). 马如龙, 彭超群, 王日初, 等. 中国有色金属学报, 2020, 30(12), 2773. 12 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Additive Manufacturing, 2014, 1-4, 77. 13 Yadroitsev I, Yadroitsava I, Bertrand P, et al. Rapid Prototyping Journal, 2012, 18(3), 201. 14 Lam L P, Zhang D Q, Liu Z H, et al. Virtual and Physical Prototyping, 2015, 10(4), 207. 15 Thijs L, Kempen K, Kruth J P, et al. Acta Materialia, 2013, 61(5), 1809. 16 Li W, Li S, Liu J, et al. Materials Science and Engineering:A, 2016, 663, 116. 17 Manfredi D, Calignano F, Krishnan M, et al. Materials, 2013, 6(3), 856. 18 Yadroitsev I, Gusarov A, Yadroitsava I, et al. Journal of Materials Processing Technology, 2010, 210(12), 1624. 19 Dai D H, Gu D D. International Journal of Machine Tools and Manufacture, 2016, 100, 14. 20 Wei P, Wei Z Y, Chen Z, et al. Applied Physics A, 2017, 123(8), 540. 21 Wang X C. Microstructure and properties of selective laser melting AlSi10Mg alloy. Master’s Thesis, Anhui University of Technology, China, 2017 (in Chinese). 王学才. 选择性激光熔化AlSi10Mg合金组织与性能研究. 硕士学位论文, 安徽工业大学, 2017. 22 Yu T B, Song B X, Xi W C, et al. Journal of Northeastern University(Natural Science Edition), 2019, 40(4), 537 (in Chinese). 于天彪, 宋博学, 郗文超, 等. 东北大学学报(自然科学版), 2019, 40(4), 537. 23 Wang D, Yang Y Q, Huang Y L, et al. Journal of South China University of Technology(Natural Science Edition), 2010, 38(6), 107 (in Chinese). 王迪, 杨永强, 黄延禄, 等. 华南理工大学学报(自然科学版), 2010, 38(6), 107. 24 Lalas C, Tsirbas K, Salonitis K, et al. The International Journal of Advanced Manufacturing Technology, 2007, 32(1-2), 34. 25 Kempen K, Thijs L, Yasa E, et al. In:22nd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, USA, 2011. 26 Xiang Z W, Yin M, Yin G F, et al. Engineering Science and Technology, 2020, 52(1), 134 (in Chinese). 向召伟, 殷鸣, 殷国富, 等. 工程科学与技术, 2020, 52(1), 134. 27 Bidare P, Bitharas I, Ward R M, et al. Acta Materialia, 2018, 142, 107. 28 Cai Z Y, Liu H J, Wang R C, et al. TheChinese Journal of Nonferrous Metals, 2022, 32(1), 50 (in Chinese). 蔡志勇, 刘海江, 王日初, 等. 中国有色金属学报, 2022, 32(1), 50. 29 Woo Y, Hwang T, Oh I, et al. Advances in Mechanical Engineering, 2019, 11(1), 1687814018822200. 30 Gu D D, Yang Y, Xi L X, et al. Optics & Laser Technology, 2019, 119, 105600. 31 Ansari M J, Nguyen D S, Park H S. Materials, 2019, 12(8), 1272. 32 Li Y, Gu D. Materials & Design, 2014, 63, 856. 33 Loh L E, Chua C K, Yeong W Y, et al. International Journal of Heat and Mass Transfer, 2015, 80, 288. 34 Wu H, Li J, Wei Z, et al. Rapid Prototyping Journal, 2020, 26(5), 871. 35 Yasa E, Deckers J, Kruth J. Rapid Prototyping Journal, 2011, 17(5), 312. 36 Teng B R, Li Z H, Li H Y, et al. Materials Reports, 2022, 36(2), 142 (in Chinese). 滕宝仁, 黎振华, 李淮阳, 等. 材料导报, 2022, 36(2), 142. 37 Rao H, Giet S, Yang K, et al. Materials & Design, 2016, 109, 334. 38 Chen S, Guillemot G, Gandin C A. Acta Materialia, 2016, 115, 448. 39 Li X, Tan W. Computational Materials Science, 2018, 153, 159. 40 Liu S, Zhu H, Peng G, et al. Materials & Design, 2018, 142, 319. 41 Liu X H, Zhao C C, Zhou X, et al. Materials & Design, 2019, 168, 107677. 42 Chen M X, Li X P, Ji G, et al. Applied Sciences, 2017, 7(3), 250. 43 Engin S. Transactions of Nonferrous Metals Society of China, 2020, 30(12), 3183. 44 Nie P, Ojo O A, Li Z. Acta Materialia, 2014, 77, 85. 45 Zhang J, Wu L, Zhang Y, et al. Metal Powder Report, 2019, 74(1), 20. 46 Zhang Y Y. Selective laser melting formation of AlSi10Mg alloy and its composites. Master’s Thesis, Shandong University, China, 2020 (in Chinese). 张玉莹. 激光选区熔化成形AlSi10Mg合金及复合材料的研究. 硕士学位论文, 山东大学, 2020. 47 Gor M, Soni H, Wankhede V A, et al. Materials, 2021, 14(21), 6527. 48 Li R D. Research on the key basic issues in selective laser melting of metallic powder. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2010 (in Chinese). 李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究. 博士学位论文, 华中科技大学, 2010. 49 Xi L X, Gu D D, Guo S, et al. Journal of Materials Research and Technology-Jmr&t, 2020, 9(3), 2611. 50 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Additive Manufacturing, 2014, 1-4, 77. 51 Ni X Q, Kong D C, Wen Y, et al. Powder Metallurgy Technology, 2019, 37(3), 163 (in Chinese). 倪晓晴, 孔德成, 温莹, 等. 粉末冶金技术, 2019, 37(3), 163. 52 Maskery I, Aboulkhair N T, Corfield M R, et al. Materials Characterization, 2016, 111, 193. 53 Wu L Z, Wen Y J, Zhang B C, et al. Powder Metallurgy Technology, 2021, 39(6), 549 (in Chinese). 吴灵芝, 温耀杰, 张百成, 等. 粉末冶金技术, 2021, 39(6), 549. 54 Zeng S H. Research on preparation and selective laser melting of TiB2/AlSi10Mg composite powders. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese). 曾思惠. TiB2/AlSi10Mg复合粉体材料的制备与选区激光熔化成形研究. 硕士学位论文, 华南理工大学, 2020. 55 Zou Y T, Wei Z Y, Du J, et al. Applied Laser, 2016, 36(6), 656 (in Chinese). 邹亚桐, 魏正英, 杜军, 等. 应用激光, 2016, 36(6), 656. 56 Ke Y, Ma P, Ma Y C, et al. Applied Laser, 2019, 39(2), 198 (in Chinese). 柯宇, 马盼, 马永超, 等. 应用激光, 2019, 39(2), 198. 57 Maamoun A H, Xue Y F, Elbestawi M A, et al. Materials, 2018, 11(12), 2343. 58 Xiao Y K, Chen H, Bian Z Y, et al. Journal of Materials Science & Technology, 2022, 109, 254. 59 Huang J G, Ren S B. Materials Reports, 2021, 35(23), 23142 (in Chinese). 黄建国, 任淑彬. 材料导报, 2021, 35(23), 23142. 60 Zhang J L, Song B, Wei Q S, et al. Journal of Materials Science & Technology, 2019, 35(2), 270. 61 Liu X, Zhao C, Zhou X, et al. Materials & Design, 2019, 168, 107677. 62 Chen B, Moon S K, Yao X, et al. Scripta Materialia, 2017, 141, 45. 63 Li W, Li S, Liu J, et al. Materials Science and Engineering:A, 2016, 663, 116. 64 Suryawanshi J, Prashanth K G, Scudino S, et al. Acta Materialia, 2016, 115, 285. 65 Wang P, Eckert J, Prashanth K G, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(8), 2001. 66 Meng C, Cui H C, Lu F G, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(6), 1543. 67 Quested T E, Greer A L, Cooper P S. In:Aluminum alloys, Gregson P J, Harris S J, ed., Zurich-Uetikon, Trans Tech Publications Ltd, 2002, pp.53. 68 Yuan Z. Preparation and characterization of aluminum matrix composites reinforced by micro/nano Al2O3 particles. Master’s Thesis, Taiyuan University of Science and Technology, China, 2016 (in Chinese). 袁铮. 微/纳米Al2O3颗粒增强铝基复合材料的制备与表征. 硕士学位论文, 太原科技大学, 2016. 69 Ye H, Zhang J Q, Huang J Q, et al. Materials Reports, 2019, 33(22), 3789 (in Chinese). 叶寒, 张坚强, 黄俊强, 等. 材料导报, 2019, 33(22), 3789. 70 Thijs L, Kempen K, Kruth J P, et al. Acta Materialia, 2013, 61(5), 1809. 71 Xue C, Yu J K, Zhu X M. Materials & Design, 2011, 32(8), 4225. 72 James S J, Venkatesan K, Kuppan P, et al. Procedia Engineering, 2014, 97, 1018. 73 Zhang M L. Study on strengthening and toughening mechanism of in-situ TiB2/Al-Si composite fabricated by selective laser melting. Master’s Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese). 章敏立. 激光选区熔化原位自生TiB2/Al-Si复合材料强韧化机理研究. 硕士学位论文, 上海交通大学, 2018. 74 Li X P, Ji G, Chen Z, et al. Acta Materialia, 2017, 129, 183. 75 Yan T Q, Tang P J, Chen B Q, et al. Journal of Mechanical Engineering, 2020, 56(24), 96 (in Chinese). 闫泰起, 唐鹏钧, 陈冰清, 等. 机械工程学报, 2020, 56(24), 96. 76 Brodova I G, Chikova O A, Petrova A N, et al. Physics of Metals and Metallography, 2019, 120(11), 1109. 77 Li Y, Gu D, Zhang H, et al. Chinese Journal of Mechanical Engineering, 2020, 33(1), 33. 78 Ke L D, Xue G, Zhu H H, et al. Aerospace Shanghai, 2019, 36(2), 118 (in Chinese). 柯林达, 薛刚, 朱海红, 等. 上海航天, 2019, 36(2), 118. 79 Zou T C, Chen M Y, Mei S Y, et al. Journal of Materials Engineering, 2022, 50(12), 143 (in Chinese). 邹田春, 陈敏英, 梅思远, 等. 材料工程, 2022, 50(12), 143. 80 Guo M, Ye Y, Jiang X, et al. Journal of Materials Engineering and Performance, 2019, 28(11), 6753. 81 Fang N W, Sun L B, Huang L J, et al. Acta Metallurgica Sinica, DOI:10. 11900/0412. 1961. 2022. 00542(in Chinese). 方乃文, 孙徕博, 黄陆军, 等. 金属学报, DOI:10. 11900/0412. 1961. 2022. 00542. 82 Tan C, Li R, Su J, et al. International Journal of Machine Tools and Manufacture, 2023, 189, 104032. 83 Zhu S, Katti I, Qiu D, et al. Materials Science and Engineering:A, 2023, 882, 145486. 84 Bosio F, Phutela C, Ghisi N, et al. Materials Science and Engineering:A, 2023, 879, 145268. 85 Fan W, Tan H, Lin X, et al. Materials & Design, 2018, 160, 1096. 86 Du D, Haley J C, Dong A, et al. Materials & Design, 2019, 181, 107923. 87 Zhang Z, Li J, Cheng T, et al. Virtual and Physical Prototyping, 2023, 18(1), 2161918. 88 Todaro C J, Easton M A, Qiu D, et al. Nature Communications, 2020, 11(1), 142. 89 Zhang C, Chen B, Li H, et al. Ultrasonics, 2023, 135, 107134. 90 Ivanov I A, Dub V S, Karabutov A A, et al. ScientificReports, 2021, 11(1), 23501.