Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22110159-6    https://doi.org/10.11896/cldb.22110159
  高分子与聚合物基复合材料 |
纤维素基碳材料应变传感器的制备及性能
刘亮1, 李思雨1, 赵春霞1,*, 向东1, 李云涛1,2,*, 李辉1
1 西南石油大学新能源与材料学院,成都 610500
2 西南石油大学油气藏地质开发国家重点实验室,成都 610500
Preparation and Properties of Strain Sensor Based on Cellulose Carbon Material
LIU Liang1, LI Siyu1, ZHAO Chunxia1,*, XIANG Dong1, LI Yuntao1,2,*, LI Hui1
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 20059KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性应变传感器作为未来可穿戴传感设备和人机交互系统的重要组成部分,其成本控制、简易制备流程以及穿戴舒适性已成为该领域的重要关注点。以生物质α-纤维素(CA)为原料,通过简单的碳化过程将其转化为具有良好导电性的材料CAC。利用聚二甲基硅氧烷(PDMS)将其封装成柔性应变传感器,探讨分析了该传感器的应变传感行为、可重复性以及穿戴舒适性,并将其应用于人体运动监测。测试结果表明:该传感器具有0.05%~20%的应变传感范围,最高灵敏度可达3.38,在1 000次循环后仍具有稳定的信号输出,并且能够监测人体的肢体运动以及细小的生理运动。除此之外,该传感器所表现出的良好透气性对提升可穿戴设备的舒适性具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘亮
李思雨
赵春霞
向东
李云涛
李辉
关键词:  应变传感器  聚二甲基硅氧烷  α-纤维素  碳化  运动监测    
Abstract: As an important part of future wearable sensing devices and human-computer interaction systems, flexible strain sensors have become an important concern in this field for their cost control, simple fabrication process and wearable comfort. In this work, biomass α-cellulose (CA) was used as raw material and converted into a material with good conductivity (CAC) by a simple carbonization process. The flexible strain sensor was packaged with polydimethylsiloxane (PDMS), the strain sensing behavior, repeatability and wearable comfort of the sensor were discussed and analyzed, and the sensor was applied to human motion monitoring. The test results showed that the sensor had a strain sensing range of 0.05%—20%, and the highest sensitivity can reach 3.38. It still had a stable signal output after 1 000 cycles, and can monitor human limb movements and small physiological movements. In addition, the good air permeability shown by the sensor was of great significance for improving the comfort of wearable devices.
Key words:  strain sensor    polydimethylsiloxane    α-cellulose    carbonization    motion monitoring
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TP212  
基金资助: 四川省应用基础研究项目(2017JY0152)
通讯作者:  *李云涛,西南石油大学新能源与材料学院教授、博士研究生导师,四川省“百人计划”特聘专家。主要从事高性能高分子材料和新能源用新型高分子材料的研究。已在国内外重要刊物上发表论文100余篇,获授权专利31项,已完成成果转化9项,获四川省科学技术进步奖二等奖1项。yuntaoli@swpu.edu.cn
赵春霞,西南石油大学新能源与材料学院副教授。主要从事功能与高性能热固化型树脂、能源用新型高分子材料以及柔性应变传感材料的研究。已在国内外重要刊物上发表论文90多篇(SCI收录70余篇),获授权专利27项,已完成成果转化7项。polychem2011@hotmail.com   
作者简介:  刘亮,西南石油大学新能源与材料学院博士研究生。主要从事可穿戴柔性应变传感器用水凝胶材料的分子设计、制备及性能优化等研究。已发表SCI论文5篇。
引用本文:    
刘亮, 李思雨, 赵春霞, 向东, 李云涛, 李辉. 纤维素基碳材料应变传感器的制备及性能[J]. 材料导报, 2024, 38(13): 22110159-6.
LIU Liang, LI Siyu, ZHAO Chunxia, XIANG Dong, LI Yuntao, LI Hui. Preparation and Properties of Strain Sensor Based on Cellulose Carbon Material. Materials Reports, 2024, 38(13): 22110159-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110159  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22110159
1 Zhang X Z, Xiang D, Zhu W Q, et al. Composites Science and Technology, 2020, 200, 108437.
2 Peng B W, Li H, Li Y T, et al. Chemical Engineering Journal, 2020, 395, 125079.
3 Ji S B, Chen X D. Chemical Journal of Chinese Universities, 2021, 42(4), 1074(in Chinese).
姬少博, 陈晓东. 中国大学化学学报, 2021, 42(4), 1074.
4 Kwon J, Suh Y D, Lee J, et al. Journal of Materials Chemistry C, 2018, 6(28), 7445.
5 Xiang D, Zhang X Z, Li Y T, et al. Composites Part B: Engineering, 2019, 176, 107250.
6 Luo Z B, Chen J, Zhu Z F, et al. ACS Applied Materials & Interfaces, 2021, 13(6), 7635.
7 Khan H, Razmjou A, Ebrahimi W M, et al. Sensors (Basel), 2018, 18(2), 418.
8 He F L, You X Y, Wang W G, et al. Small Methods, 2021, 5(3), 2001041.
9 Bu T Z, Xiao T X, Yang Z W, et al. Advanced Materials, 2018, 30(16), e1800066.
10 Liu L, Wang L B, Liu D R, et al. Materials Reports, 2022, 36(4), 19(in Chinese).
刘璐, 王李波, 刘大荣, 等. 材料导报, 2022, 36(4), 19.
11 Wang Y L, Hao J, Huang Z Q, et al. Carbon, 2018, 126, 360.
12 Ha S H, Kim J M. Composites Science and Technology, 2022, 217, 109111.
13 Zhang X J, Zhang Y C, Zhang W L, et al. Chemical Engineering Journal, 2021, 420, 130447.
14 Zhang C J, Li H, Huang A M, et al. Small, 2019, 15(18), e1805493.
15 Kong X, Song H R, Song J Y, et al. Materials Reports, 2022, 36(11), 194(in Chinese).
孔霞, 宋浩冉, 宋佳音, 等. 材料导报, 2022, 36(11), 194.
16 Yang H T, Xiao X, Li Z P, et al. ACS Nano, 2020, 14(9), 11860.
17 Jang Y, Kim S M, Spinks G M, et al. Advanced Materials, 2020, 32(5), e1902670.
18 Chen J W, Zhu Y T, Jiang W. Composites Science and Technology, 2020, 186, 107938.
19 Qi P D, Li N, Liu Y, et al. ACS Applied Materials & Interfaces, 2020, 12(20), 23272.
20 Zhi M Y, Huang W X, Shi Q W, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(7), 7361.
21 Wei J, Wu Z Q, Dong R Z. Chemical Journal of Chinese Universities, 2020, 51(3), 619(in Chinese).
卫军, 吴志强, 董荣珍. 中国大学化学学报, 2020, 51(3), 619.
22 Lu Y L, Mu X W, Huang L S, et al. Materials Reports, 2022, 36(6), 5(in Chinese).
鲁猷栾, 穆新伟, 黄乐舒, 等. 材料导报, 2022, 36(6), 5.
23 Chen S, Song Y J, Xu F. ACS Applied Materials & Interfaces, 2018, 10(40), 34646.
24 Liu Y H, Liu S L, Wu C Y, et al. Materials Reports, 2024, 38(4), 22070258 (in Chinese).
刘玉慧, 柳仕林, 吴聪影, 等. 材料导报, 2024, 38(4), 22070258.
25 Li Y Q, Zhu W B, Yu X G, et al. ACS Applied Materials & Interfaces, 2016, 8(48), 33189.
26 Ren J, Du X, Zhang W J, et al. RSC Advances, 2017, 7(37), 22619.
27 Fang X L, Tan J P, Gao Y, et al. Nanoscale, 2017, 9(45), 17948.
28 Jian M Q, Xia K L, Wang Q, et al. Advanced Functional Materials, 2017, 27(9), 1606066.
29 Qi D P, Zhang K Y, Tian G W, et al. Advanced Materials, 2021, 33(6), e2003155.
30 Liu H D, Zhang H J, Han W Q, et al. Advanced Materials, 2021, 33(8), e2004782.
31 Bengtsson A, Hecht P, Sommertune J, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(17), 6826.
32 Galiwango E, Abdel R N S, Al-Marzouqi A H, et al. Heliyon, 2019, 5(12), e02937.
33 Fan Y T, Liu S. Forestry Science & Technology, 2015, 40(5), 21(in Chinese).
范雅婷, 刘胜. 林业科技, 2015, 40(5), 21.
34 Lim D B K, Gong H. Carbohydrate Polymers, 2018, 201, 446.
[1] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[2] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[3] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[4] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[5] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[6] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[7] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[8] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[9] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[10] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[13] 谢奕心, 程晓农, 鞠玉琳, 魏琪. H13及H13改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报, 2023, 37(23): 22040214-8.
[14] 张城皓, 王硕珏, 田琳, 谷潇夏, 曹可, 张龙, 马灿坤, 王连才, 马慧玲, 张秀芹. 环氧树脂/碳化硼复合材料耐辐射和热老化性能研究[J]. 材料导报, 2023, 37(23): 22040049-6.
[15] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed