Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22110123-7    https://doi.org/10.11896/cldb.22110123
  金属与金属基复合材料 |
ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响
李红梅1, 孟建兵1,2,*, 于浩洋1, 董小娟1, 周海安1, 战胜杰1, 唐友泉1
1 山东理工大学机械工程学院,山东 淄博 255049
2 山东省精密制造与特种加工重点实验室,山东 淄博 255049
Effects of Nano-ZnO Doping on Morphology and Properties of Micro-arc Oxidation Film on NiTi Alloy Surface
LI Hongmei1, MENG Jianbing1,2,*, YU Haoyang1, DONG Xiaojuan1, ZHOU Haian1, ZHAN Shengjie1, TANG Youquan1
1 School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
2 Shandong Provincial Key Laboratory of Precision Manufacturing and Non-traditional Machining, Zibo 255049, Shandong, China
下载:  全 文 ( PDF ) ( 22819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对镍钛合金在体内复杂生理环境的作用下受到腐蚀而释放大量镍离子的问题,向以NaAlO2、C10H14N2Na2O8、Na2HPO4·12H2O为主要成分的电解液中添加ZnO纳米颗粒,通过微弧氧化技术在镍钛合金表面制备耐腐蚀陶瓷氧化膜层。采用帕累托法则和正态分布曲线分析ZnO纳米颗粒对氧化膜层孔隙率和孔隙尺寸的作用,通过SEM、EDS、电化学工作站以及水滴接触角来研究颗粒掺杂对氧化膜层微观形貌、化学组分、耐腐蚀性及润湿性能的影响。结果表明:颗粒掺杂后的氧化膜层更加平整致密,孔隙率下降65.3%,孔径平均值从0.518 μm降至0.321 μm;随着ZnO纳米颗粒的加入,复合膜层的O、Al、Zn含量增加,Ni含量下降,阻抗模值上升,动电位极化曲线明显地向右上方偏移,自腐蚀电位上升32.4%,而电流密度下降一个数量级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红梅
孟建兵
于浩洋
董小娟
周海安
战胜杰
唐友泉
关键词:  镍钛合金  微弧氧化  ZnO颗粒掺杂  膜层形貌  耐蚀性能    
Abstract: In view of the problem that NiTi alloy is corroded and releases a large amount of nickel ions under the complex physiological environment in the body, ZnO nanoparticles were added to the electrolyte with NaAlO2, C10H14N2Na2O8 and Na2HPO4·12H2O as the main components, a corrosion-resistant ceramic oxide film was fabricated on the surface of nickel titanium alloy using micro arc oxidation technology. Pareto’s law and normal distribution curve were introduced to analyze the effects of ZnO nanoparticles on the porosity and pore size of MAO film. Moreover, the effects of ZnO nanoparticles on the surface morphology, composition, phase structure, corrosion resistance and wettability of the film were investigated by SEM, EDS, electrochemical workstation, and water contact angle. The results show that MAO film doped with ZnO nanoparticles is more smooth and compact, the porosity decreases by 65.3%, the average pore size decreases from 0.518 μm to 0.321 μm. With the doping of nanoparticle ZnO, the amount of O, Al and Zn elements on the surface of the film increases, while the Ni element decreases. Furthermore, after doping, the surface resistance modulus of the composite film increases, the dynamic potential polarization curve shifts to the left, the self-corrosion potential increases by 32.4%, and the current density decreases by an order of magnitude.
Key words:  NiTi alloy    micro-arc oxidation    ZnO doping    film morphology    corrosion resistance
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TG178  
基金资助: 山东省自然科学基金(ZR2021ME159;ZR2021ME211)
通讯作者:  *孟建兵,山东理工大学机械工程学院教授、硕士研究生导师。2002年山东理工大学机械设计及其自动化专业本科毕业,2005年山东理工大学机电工程专业硕士毕业,2009年大连理工大学机制制造及其自动化专业博士毕业。目前主要从事电解等离子体复合加工等方面的研究工作。发表论文60余篇,包括Applied Surface Science、Ceramics International等。jianbingmeng@sdut.edu.cn   
作者简介:  李红梅,2021年6月于山东交通学院获得工学学士学位。现为山东理工大学机械工程学院硕士研究生,在孟建兵教授的指导下进行研究。目前主要研究领域为金属及其合金表面改性技术。发表论文3篇。
引用本文:    
李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
LI Hongmei, MENG Jianbing, YU Haoyang, DONG Xiaojuan, ZHOU Haian, ZHAN Shengjie, TANG Youquan. Effects of Nano-ZnO Doping on Morphology and Properties of Micro-arc Oxidation Film on NiTi Alloy Surface. Materials Reports, 2024, 38(13): 22110123-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110123  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22110123
1 Feng C C, Li L, Zhao Y G, et al. China Surface Engineering, 2019, 32(2), 120(in Chinese).
冯超超, 李丽, 赵玉刚, 等. 中国表面工程, 2019, 32(2), 120.
2 Zhao Y Z, Li J F, Guo K, et al. Journal of Manufacturing Processes, 2020, 58, 787.
3 Dong X, Fei Y, Wang J B, et al. Surface and Coatings Technology, 2021, 416, 127151.
4 Bansiddhi A, Sargeant T D, Stupp S L, et al. Acta Biomaterialia, 2008, 4(4), 773.
5 Emiliavaca A, Araujo C J, Souto C R, et al. Smart Materials and Structures, 2019, 28(1), 015010. 29.
6 Sun X Y, Wei X T, Li Z Y, et al. China Surface Engineering, 2021, 34(1), 70 (in Chinese).
孙晓宇, 魏修亭, 李志永, 等. 中国表面工程, 2021, 34(1), 70.
7 Xu J L, Liu F, Luo J M, et al. Rare Metal Materials and Engineering, 2012, 41(10), 1770(in Chinese).
徐吉林, 刘福, 罗军明, 等. 稀有金属材料与工程, 2012, 41(10), 1770.
8 Yamasaki K, Taniho H, Tate K, et al. Surface and Coatings Technology, 2021, 417, 127221.
9 Zhang K, Zhang H, Liu P, et al. Vacuum, 2019, 161, 276.
10 Fattah-Alhosseini A, Molaei M, Attarzadeh N, et al. Ceramics International, 2020, 46, 20587.
11 Meisner L L, Lotkov A I, Matveeva V A, et al. Advances in Materials Science and Engineering, 2012, 2012, 706094.
12 Mousavi S A, Moshfeghi A, Davoodian F, et al. Surface and Coatings Technology, 2021, 405, 12607.
13 Khalili L, Naji H. Surface & Coatings Technology, 2020, 397, 125985.
14 Fu T, Wu X M, Wu F, et al. Transactions of Nonferrous Metals Society of China, 2012, 22, 1661.
15 Yan C, Zeng Q F, He W J, et al. Tribology International, 2021, 155, 106816.
16 Yamasaki K, Taniho H, Tate K, et al. Tribology International, 2021, 417, 127221.
17 Fattah-Alhosseini A, Molaei M, Attarzadeh N, et al. Ceramics International, 2020, 46, 20587.
18 Cai W L, Shi H L, Wang Z X, et al. Surface Technology, 2019, 48(7), 89 (in Chinese).
才文兰, 史海兰, 王振霞, 等. 表面技术, 2019, 48(7), 89.
19 Dulski M, Dudek K, Chalon D, et al. ACS Applied Bio Materials, 2019, 2, 987.
20 Liu P, Liu Q F, Huang D Q, et al. Surface Technology, 2019, 48(7), 61(in Chinese).
刘朋, 刘群峰, 黄德群, 等. 表面技术, 2019, 48(7), 61.
21 Huang Q, Wu Z Z, Wu H, et al. Surface and Coatings Technology, 2019, 374, 1015.
22 Wang X Y, Lu X P, Ju P F, et al. Surface and Coatings Technology, 2021, 409, 126905.
23 Fattah-alhosseini A, Molaei M, Attarzadeh N, et al. Ceramics International, 2020, 46, 20587.
24 Yu Z F, Du A, Wang C Y, et al. Surface and Coatings Technology, 2021, 412, 127068.
25 Rehman Z U, Choi D J, Koo B K. Surface and Coatings Technology, 2020, 393, 125804.
[1] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[2] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[3] 曾舜柯, 翟彦博, 彭和, 魏子伟, 张毅, 胡小骞. 8-HQ插层铝合金MAO-LDHs复合膜的自修复行为研究[J]. 材料导报, 2023, 37(20): 22040022-6.
[4] 王占营, 马颖, 安守静, 孙乐. 电解液配方对纯镁微弧氧化膜层耐蚀性的影响[J]. 材料导报, 2023, 37(15): 21100085-10.
[5] 赵华星, 孙晓峰, 宋巍, 李占明, 李德民. 微弧氧化技术在铝合金腐蚀防护中的应用研究与发展[J]. 材料导报, 2021, 35(21): 21236-21242.
[6] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[7] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[8] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[9] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[10] 张贤琳, 王晓琳, 马建威, 李宝娥, 李海鹏, 刘世敏, 梁春永, 王洪水. 钛表面微弧氧化结构和成分对其润湿性的影响[J]. 材料导报, 2019, 33(24): 4035-4039.
[11] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[12] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[13] 李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1294-1299.
[14] 马妞, 黄佳木, 苏俊, 尹凌毅. MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响[J]. 材料导报, 2018, 32(16): 2768-2772.
[15] 孙博,程江波,刘奇,冯源,梁秀兵. 高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为[J]. 《材料导报》期刊社, 2018, 32(12): 1978-1982.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed