Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040022-6    https://doi.org/10.11896/cldb.22040022
  金属与金属基复合材料 |
8-HQ插层铝合金MAO-LDHs复合膜的自修复行为研究
曾舜柯, 翟彦博*, 彭和, 魏子伟, 张毅, 胡小骞
西南大学工程技术学院,重庆 400715
Self-healing Behavior of 8-HQ Intercalated Aluminum Alloy MAO-LDHs Composite Film
ZENG Shunke, ZHAI Yanbo*, PENG He, WEI Ziwei, ZHANG Yi, HU Xiaoqian
College of Engineering and Technology, South West University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 24360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步提高铝合金微弧氧化(MAO)膜的抗腐蚀能力,通过三步处理获得了MAO-LDHs/8-HQ复合膜,即制备基础MAO膜、负载铝镁水滑石(LDHs)和插层8羟基喹啉(8-HQ)。对三种膜的形貌与物相进行分析,并将三种膜破损后浸入3.5%(质量分数) NaCl水溶液中48 h,利用电化学工作站、SEM、EDS等设备与手段着重探讨了复合膜的抗腐蚀自修复行为。形貌表征与物相分析结果显示,基础MAO膜呈典型疏松多孔状;经水热合成后,铝镁LDHs呈片状结构负载在基础膜表面,将微孔完全封闭;插层处理后,HQ-进入LDHs层间,其SEM形貌无明显改变。电化学测试结果显示,MAO-LDHs/8-HQ复合膜、MAO-LDHs复合膜和MAO膜的自腐蚀电流密度分别为5.877×10-7、2.262×10-6和7.832×10-6 A/cm2,前者明显小于后两者;自腐蚀电位分别为-0.633、-0.611、-0.613 V,三者基本一致,这说明8-HQ的存在可以显著抑制MAO膜的腐蚀行为。经48 h盐浴腐蚀后,MAO-LDHs/8-HQ复合膜划痕处出现了富含HQ-特征元素(N)的花瓣状沉积物,该沉淀物附着在基体上。上述结果推测,破损后的复合膜在腐蚀环境下释放出HQ-并与基体中的Al3+发生螯合反应形成沉积物,进而实现膜层的自修复。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾舜柯
翟彦博
彭和
魏子伟
张毅
胡小骞
关键词:  自修复  微弧氧化  8-HQ  LDHs    
Abstract: To further improve the corrosion resistance of aluminum alloy micro-arc oxidation (MAO) films, MAO-LDHs/8-HQ composite films were obtained by three-step treatment, namely, preparing the MAO films, loading Al-Mg hydrotalcites (LDHs) and intercalating 8-hydroxyquinoline (8-HQ). The morphology and phase of the three films were analyzed, then the three films were damaged and immersed in 3.5wt% NaCl aqueous solution for 48 h. The anti-corrosion self-healing ability of the composite films was emphatically discussed by electrochemical workstation, SEM, EDS and other equipment and means. The results of morphology and physical phase analysis showed the MAO film was typical loose and porous. The Al-Mg LDHs synthesized by the hydrothermal method grew on the surface of the base film in a lamellar structure, which closed the micropores. After the intercalation treatment of LDHs, HQ- enters the interlayer of LDHs and its SEM morphology had no obvious change. Electrochemical test results showed the self-corrosion current densities of MAO-LDHs/8-HQ composite film, MAO-LDHs composite film and MAO film were 5.877×10-7, 2.262×10-6 and 7.832×10-6 A/cm2, respectively, with the former obviously smaller than the latter two. The self-corrosion potentials were-0.633,-0.611,-0.613 V, respectively, and the three were the same, which showed that the presence of 8-HQ can significantly inhibit the corrosion behavior. After 48 h salt bath corrosion, petal-like deposits rich in HQ- characteristic elements (N) appeared at the scratches of the MAO-LDHs/8-HQ composite film and attached to the substrate. The above results speculate the broken composite film released HQ- in the corrosive environment and chelated with Al3+ in the substrate to form deposits, thus achieving self-healing of the film layer.
Key words:  self-healing    MAO    8-HQ    LDHs
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TG178  
基金资助: 重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0417)
通讯作者:  *翟彦博,西南大学副教授、硕士研究生导师。2002年河南科技大学材料加工工程专业本科毕业,2009年重庆大学材料加工工程专业博士毕业后到西南大学工程技术学院工作至今。目前主要从事金属基复合材料、材料表面改性以及农机轻量化等研究工作。发表论文30余篇,获授权发明专利10余项。zhaiyanbo1979@163.com   
作者简介:  曾舜柯,2017年6月于长春大学获得工学学士学位。现为西南大学工程技术学院硕士研究生,在翟彦博副教授的指导下进行研究。目前主要研究领域为农业机械轻量化、金属材料表面改性。
引用本文:    
曾舜柯, 翟彦博, 彭和, 魏子伟, 张毅, 胡小骞. 8-HQ插层铝合金MAO-LDHs复合膜的自修复行为研究[J]. 材料导报, 2023, 37(20): 22040022-6.
ZENG Shunke, ZHAI Yanbo, PENG He, WEI Ziwei, ZHANG Yi, HU Xiaoqian. Self-healing Behavior of 8-HQ Intercalated Aluminum Alloy MAO-LDHs Composite Film. Materials Reports, 2023, 37(20): 22040022-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040022  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040022
1 Lei X, Lin N M, Zou J J, et al. Surface Technology, 2019, 48(12), 10(in Chinese).
雷欣, 林乃明, 邹娇娟, 等. 表面技术, 2019, 48(12), 10.
2 Hui X G, Wei X Y, Chen T, et al. Metallurgy and Materials, 2020, 40(4), 62(in Chinese).
惠鑫刚, 魏向禹, 陈涛, 等. 冶金与材料, 2020, 40(4), 62.
3 Zhao H X, Sun X F, Song W, et al. Materials Reports, 2021, 35(21), 21236(in Chinese).
赵华星, 孙晓峰, 宋巍, 等. 材料导报. 2021, 35(21), 21236.
4 Nie H C. Study on influence of the insulation propertie of micro-arc oxidation ceramic laye on aluminum alloy by solution components and sealing technique. Master’s Thesis, Xi’an University of Technology, China, 2017(in Chinese).
聂海晨, 溶液组分及封闭工艺对铝合金微弧氧化膜绝缘性能的影响研究. 硕士学位论文, 西安理工大学, 2017.
5 Zhang Y, Duan X Y, Zheng W Q, et al. Materials Protection, 2020, 53(5), 88(in Chinese).
张宇, 段翔宇, 郑伟青, 等. 材料保护, 2020, 53(5), 88.
6 Fan C, Shi H L, Song Z W, et al. Materials Protection, 2020, 53(11), 70(in Chinese).
樊超, 史海兰, 宋志文, 等. 材料保护, 2020, 53(11), 70.
7 Wang P, Hu J, Li R Y, et al. Science Press, 2021, 50(1), 56.
8 Zhang G S, Ding W G, Jiang B, et al. Equipment Environmental Engineering, 2020, 17(8), 97(in Chinese).
张广生, 丁伟国, 姜波, 等. 装备环境工程, 2020, 17(8), 97.
9 Wang S, Liu K K, Ma Y, et al. The Chinese Journal of Nonferrous Metals. 2020, 30(12), 2798(in Chinese).
王晟, 刘康康, 马颖, 等. 中国有色金属学报, 2020, 30(12), 2798.
10 Bouali A C, Serdechnova M, Blawert C, et al. Applied Materials Today, 2020, 21, 1.
11 Yu W H, Ni Z M, Wang L G, et al. Bulletin of Science and Technology, 2003, 19(4), 330(in Chinese).
俞卫华, 倪哲明, 王力耕, 等. 科技通报, 2003, 19(4), 330.
12 Ba Z X, Chen Y J, Dong Q S, et al. Materials Reports, 2017, 31(6), 144(in Chinese).
巴志新, 陈永俊, 董强胜, 等. 材料导报, 2017, 31(6), 144.
13 Szabados M, Adam A A, Traj P, et al. Journal of Catalysis, 2020, 391, 282.
14 Zhang F, Cao X X, Ni Z M, et al. Chinese Journal of Inorganic Chemistry, 2009, 25(2), 271(in Chinese).
张峰, 曹晓霞, 倪哲明, 等. 无机化学学报, 2009, 25(2), 271.
15 Yu P H, Zuo Y, Zhu X B, et al. Chinese Journal of Rare Metals, 2019, 43(1), 67(in Chinese).
于佩航, 左佑, 朱鑫彬, 等. 稀有金属, 2019, 43(1), 67.
16 Wei F F, Wang H, Xu Y, et al. Journal of Synthetic Crystals, 2009, 43(1), 756(in Chinese).
卫芳芳, 王华, 徐阳, 等. 人工晶体学报, 2009, 38(3), 756.
17 Zhao Y L, Yu T Z. Materials Reports, 2007, 21(4), 21(in Chinese).
赵玉玲, 俞天智. 材料导报, 2007, 21(4), 21.
18 Wang L D, Zong Q F, Sun W, et al. Corrosion Science, 2015, 93, 256.
19 Zong Q F, Wang L D, Sun W, et al. Corrosion Science, 2014, 89, 127.
20 Zhang K Y, Wang L D, Liu G C. Corrosion Science, 2013, 75, 38.
21 Yan Y, Liu G, Liu B. Insulating Materials, 2006, 39(6), 28(in Chinese).
严岩, 刘岗, 刘斌. 绝缘材料, 2006, 39(6), 28.
22 Song R G, Kong D J, Song R X, et al. Micro-arc oxidation technology and application, Science Press, China, 2018, pp. 6(in Chinese)
宋仁国, 孔德军, 宋若希, 等. 微弧氧化技术与应用, 科学出版社, 2018, pp. 6
23 Wang Y J, Zhang P, Du Y H, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(9), 1730(in Chinese).
王玉洁, 张鹏, 杜云慧, 等. 中国有色金属学报, 2018, 28(9), 1730.
24 Wang Z H, Zhang J M, Li Y et al. Transactions of Nonferrous Metals Society of China, 2019, 29, 2066.
25 Bouali A C, Serdechnova M, Blawert C, et al. Applied Materials Today, 2020, 21, 1.
26 Zong Q F. Study of surface modification for enhanced self-healing anti-corrosion property of magnesium and aluminum. Master’s Thesis, Dalian University of Technology, China, 2015(in Chinese).
宗秋凤, 表面改性增强镁铝自愈合防腐蚀性能的研究. 硕士学位论文, 大连理工大学, 2015
27 Chen F, Yu P H, Zang Y. Journal of Alloys and Compounds, 2017, 711, 342.
[1] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[2] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[3] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[4] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[5] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[6] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[7] 林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 22050098-6.
[8] 王占营, 马颖, 安守静, 孙乐. 电解液配方对纯镁微弧氧化膜层耐蚀性的影响[J]. 材料导报, 2023, 37(15): 21100085-10.
[9] 叶姣凤, 王飞, 张钧翔, 左洋, 冯利邦, 罗晓晓. 热可逆聚氨酯改性自修复环氧树脂的力学性能和自修复行为[J]. 材料导报, 2023, 37(14): 22010044-6.
[10] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[11] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[12] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[13] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[14] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[15] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed