Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23030301-5    https://doi.org/10.11896/cldb.23030301
  金属与金属基复合材料 |
CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能
沈士泰1,2, 陈雨晨2, 卫国英2, 朱本峰2,*
1 徐工集团工程机械股份有限公司,江苏 徐州 221000
2 中国计量大学材料与化学学院,杭州 310018
Electrochemical Preparation and Surface Properties of CeO2/Aluminum Alloy Self-healing Anodic Composite Films
SHEN Shitai1,2, CHEN Yuchen2, WEI Guoying2, ZHU Benfeng2,*
1 XCMG Construction Machinery Co., Ltd., Xuzhou 221000, Jiangsu, China
2 College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
下载:  全 文 ( PDF ) ( 15711KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过阳极氧化工艺与溶胶-凝胶沉积涂层相结合制备阻隔涂层,并用其替代环境污染型的铬酸盐转化涂层,以提高铝合金的耐蚀性能。采用阳极氧化的方法构筑铝合金表面钝化膜,再用Ce基溶胶浸润阳极氧化层的多孔结构,然后煅烧封孔,制备了CeO2/阳极氧化复合膜。研究了阳极氧化温度对氧化膜层表面形貌、耐蚀性能的影响,确定了最佳阳极氧化温度为15 ℃。进一步探索了Ce基溶胶不同陈化时间对CeO2/阳极氧化复合膜的表面形貌、厚度、防腐蚀性能及自修复性能的影响。研究表明,Ce基溶胶陈化时间为5 h时,所得CeO2/阳极氧化复合膜表面平整、致密,膜层厚度为26.20 μm,Ce原子在膜层表面均匀分布,腐蚀电位为0.021 V,说明该膜层具有很好的防腐蚀性能。通过电化学阻抗谱发现该膜层在3.5%(质量分数,下同)NaCl溶液中具有短时间的自修复性能。该方法为6061铝合金表面保护膜层的获得提供一种新途径,为取代铬酸盐涂层开辟了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈士泰
陈雨晨
卫国英
朱本峰
关键词:  铝合金  阳极氧化  Ce基溶胶  自修复    
Abstract: In order to improve the corrosion resistance of aluminum alloy, a barrier coating was prepared by combining anodizing process with sol-gel deposition coating to replace the environment-polluting chromate conversion coating. The passivation film on the surface of aluminum alloy was constructed by anodizing method, and then the porous structure of the anodizing layer was infiltrated by Ce-based sol, and then the hole was calcined to seal the hole. The effect of anodic oxidation temperature on the surface morphology and corrosion resistance of the oxide film was studied, and the optimal anodic oxidation temperature was determined to be 15 ℃. The effects of different aging times of Ce-based sol on the surface morphology, thickness, corrosion resistance and self-healing properties of CeO2/anodized composite film were further explored. It was found that when the Ce-based sol aging time was 5 h, the surface of the CeO2/anodized composite film was smooth and compact, and the thickness of the film was 26.20 μm. The Ce atoms were evenly distributed on the surface of the film, and the corrosion potential was 0.021 V, indicating that the film had good corrosion resistance. Electrochemical impedance spectroscopy showed that the membrane had short-term self-healing properties in 3.5wt% NaCl solution. This method provides a new way to obtain protective film on the surface of 6061 aluminum alloy, and opens up a new prospect for replacing chromate coating.
Key words:  aluminum alloy    anodic oxidation    Ce-based sol    self-healing
发布日期:  2023-09-06
ZTFLH:  O646.6  
基金资助: 国家自然科学基金(52171083)
通讯作者:  *朱本峰,中国计量大学材料与化学学院讲师、硕士研究生导师。2013年三峡大学化学系化学专业本科毕业,2019年浙江大学化学专业博士毕业后到中国计量大学工作至今。目前主要从事高分子功能材料、新能源材料与器件防护等方面的研究工作。发表学术论文10余篇,授权发明专利12项。zhubenfeng88@cjlu.edu.cn   
作者简介:  沈士泰,2015年6月、2017年6月分别于中国计量大学和中国矿业大学获得工学学士学位和硕士学位。现为徐工集团工程机械股份有限公司科技质量部处长,目前负责工程机械方面的技术质量管理工作。
引用本文:    
沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
SHEN Shitai, CHEN Yuchen, WEI Guoying, ZHU Benfeng. Electrochemical Preparation and Surface Properties of CeO2/Aluminum Alloy Self-healing Anodic Composite Films. Materials Reports, 2023, 37(S1): 23030301-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030301  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23030301
1 Yasakau K A, Carneiro J, Zheludkevich M L, et al. Surface and Coa-tings Technology, 2014, 246, 6.
2 Linardi E, Haddad R, Lanzani L. Procedia Materials Science, 2012, 1, 550.
3 García-Rubio M, De Lara M P, Ocón P, et al. Electrochimica Acta, 2009, 54(21), 4789.
4 Boisier G, Lamure A, Pébère N, et al. Surface and Coatings Technology, 2009, 203(22), 3420.
5 García-Rubio M, Ocón P, Curioni M, et al. Corrosion Science, 2010, 52(7), 2219.
6 中国洗涤用品工业, 2018(1), 68.
7 低温与特气, 2019, 37(1), 33.
8 Zhang X, Ju D Y, Li J H, et al. Materials Protection, 2019, 52(7), 12(in Chinese).
张欣, 巨东英, 李建辉, 等. 材料保护, 2019, 52(7), 12.
9 Liu D, Zhang X, Liu F D, et al. China Surface Engineering, 2019, 32(3), 99(in Chinese).
刘栋, 张希, 刘凤东, 等. 中国表面工程, 2019, 32(3), 99.
10 Telmenbayar L, Ramu A G, Yang D, et al. Surface and Coatings Technology, 2020, 403, 126433.
11 Li W C, Zhang M M, Lei Y, et al. Corrosion & Protection, 2015, 36(9), 832(in Chinese).
李文超, 张明明, 雷越, 等. 腐蚀与防护, 2015, 36(9), 832.
12 He Y C, Li F, Yan B J, et al. Journal of Shanghai University(Natural Science), 2022, 28(1), 19(in Chinese).
何永超, 李飞, 颜炳君, 等. 上海大学学报(自然科学版), 2022, 28(1), 19.
13 Ma M T. Study on corrosion characteristics of aluminum alloy in chromium-free deoxidizing solution. Master's Thesis, Nanchang Hangkong University, China, 2020(in Chinese).
马梦婷. 铝合金在无铬脱氧溶液中的腐蚀特性研究. 硕士学位论文, 南昌航空大学, 2020.
14 Chen L, Liao C C. Zhejiang Chemical Industry, 2016, 47(4), 31(in Chinese).
陈梁, 廖重重. 浙江化工, 2016, 47(4), 31.
15 Meng X F, Wei GY, Ge H L, et al. International Journal of Electroche-mical Science, 2013, 8(8), 10660.
16 Kazemi M, Danaee I, Zaarei D. Materials Chemistry and Physics, 2014, 148(1-2), 223.
17 Capelossi V R, Poelman M, Recloux I, et al. Electrochimica Acta, 2014, 124, 69.
18 Terada M, Queiroz F M, Aguiar D B S, et al. Surface and Coatings Technology, 2019, 372, 422.
19 Franco M, Hari K T, Pillai A M, et al. Acta Metallurgica Sinica (English Letters), 2013, 26(6), 647.
20 Rajasekaran B, Raman S G S, Krishna L R, et al. Surface and Coatings Technology, 2008, 202(8), 1462.
21 Thompson G E, Habazaki H, Shimizu K, et al. Aircraft Engineering and Aerospace Technology, 1999, 71(3), 228.
22 Keller F, Hunter M S, Robinson D L. Journal of the Electrochemical Society, 1953, 100(9), 411.
23 Lee S, Kim D, Kim Y, et al. Metals and Materials International, 2016, 22(1), 20.
24 Ali I, Quazi M M, Zalnezhad E, et al. Transactions of the Indian Institute of Metals, 2019, 72(10), 2773.
25 Theohari S, Kontogeorgou C. Applied Surface Science, 2013, 284, 611.
26 Wang Z, Lei Y, Chen K, et al. International Journal of Electrochemical Science, 2021, 16, 210243.
27 Chung I C, Chung C K, Su Y K. Surface and Coatings Technology, 2017, 313, 299.
28 Zhu B, Liu J, Chen Y, et al. Surface and Coatings Technology, 2017, 331, 40.
[1] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[2] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[3] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[4] 陈海燕, 王超, 潘美诗, 吉西西, 曾越, 安义博, 邹燕成. Zn-Al合金超声空化数值模拟和细晶强化机理研究[J]. 材料导报, 2023, 37(7): 21090048-6.
[5] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[6] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[7] 张忠科, 蒋常铭, 李轩柏, 熊建强, 童辉. 汽车用铝钢无匙孔搅拌摩擦点焊接头组织及界面特征研究[J]. 材料导报, 2023, 37(5): 21070281-6.
[8] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[9] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[10] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[11] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[12] 叶姣凤, 王飞, 张钧翔, 左洋, 冯利邦, 罗晓晓. 热可逆聚氨酯改性自修复环氧树脂的力学性能和自修复行为[J]. 材料导报, 2023, 37(14): 22010044-6.
[13] 陈轩, 李萌蘖, 卜恒勇, 左汉宁. 7系铝合金焊接技术的研究现状及展望[J]. 材料导报, 2023, 37(13): 21010106-9.
[14] 马国龙, 张志毅, 毛镇东, 李刚卿, 韩晓辉, 杨志斌. 高速列车用铝合金型材激光-MIG复合焊工艺特性和接头性能[J]. 材料导报, 2023, 37(12): 21110142-6.
[15] 欧阳祚琼, 罗兵辉, 邓攀, 莫文锋, 柏振海. 终轧温度对2024铝合金晶间腐蚀和力学性能的影响[J]. 材料导报, 2023, 37(11): 21110100-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed