Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23040034-10    https://doi.org/10.11896/cldb. 23040034
  无机非金属及其复合材料 |
“双碳”背景下煤矸石高附加值功能化改性技术现状与展望
孙志辉, 赵帅*
中国矿业大学矿业工程学院,江苏 徐州 221116
Present Situation and Prospect of High Value-added Functional Modification Technology of Coal Gangue Under the Background of ‘Carbon Peaking and Carbon Neutrality Goals'
SUN Zhihui, ZHAO Shuai*
School of Mines, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
下载:  全 文 ( PDF ) ( 25065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤矸石作为煤炭开采、洗选过程中的主要伴生产物,其排放量在矿区固废中的占比达40%以上,已被列为“十四五”规划中重点关注的大宗固废之一。近年来,在“碳达峰与碳中和”目标驱动下,煤矸石再利用问题越来越受重视。目前我国煤矸石的综合处置主要包括井下利用、道路建设、化工原料及生态防护等方面。随着我国大型现代化矿井建设的推进以及低碳化可持续经济的发展,煤矿矸石呈规模化、高值化利用的发展趋势。但是,煤矸石综合利用率仍不足60%,尚未形成较为规范可行的煤矸石综合利用与处置的研究体系。本文综合梳理了现阶段煤矸石高值化利用研究的最新动态,概括了目前煤矸石功能化改性方法的机理,并深入剖析了六种煤矸石高附加值利用技术的应用现状、效果及优缺点。同时,基于以往研究的进展和效果,还提出了矸石地热储能、固碳化功能性充填的研究设想,为煤矿碳中和提供了颇具潜力的减碳策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙志辉
赵帅
关键词:  煤矸石  高附加值利用  功能性充填  微观调控    
Abstract: As the main associated products in the process of coal mining and washing, coal gangue emissions account for more than 40% of the solid waste in mining areas. And it has been listed as one of the bulk solid wastes of focus attention in the ‘14th Five-Year Plan'. In recent years, driven by the goal of peak carbon dioxide emissions and carbon neutrality, the problem of coal gangue reuse has been paid more and more attention. At present, the comprehensive disposal of coal gangue in our country mainly includes underground use, road construction, che-mical raw materials and ecological protection. With the progress of large modern mine construction and the development of low carbon sustainable economy, coal gangue shows the trend of large-scale and high value use. However, the comprehensive utilization rate of coal gangue is still less than 60%, and a more standardized and in-depth research system on comprehensive utilization and disposal of coal gangue has not yet been formed. The latest development of research on high-value utilization of coal gangue at present stageis comprehensively sorted out, the principle of existing functional modification methods of coal gangue is summarized, and the application status, effects, pros and cons of various high-value utilization technology for coal gangue are deeply analyzed. At the same time, based on the progress and effect of previous research, we also put forward the research ideas of geothermal energy storage and solid carbonation functional filling of gangue, which provide promising carbon reduction strategies for carbon neutrality in coal mining.
Key words:  coal gangue    high value-added utilization    functional filling    micro control
发布日期:  2023-09-06
ZTFLH:  X751  
基金资助: 中央高校青年科技基金(2022QN1003);中国博士后科学基金(2021M703495)
通讯作者:  *赵帅,中国矿业大学矿业工程学院讲师、硕士研究生导师。2015年吉林大学勘查技术与工程(勘察工程)专业本科毕业,2020年吉林大学建设工程学院地质工程专业博士毕业后到中国矿业大学工作至今。主要从事矿山固废地热井固井材料及非常规油气原位转化工艺研究。发表学术论文20余篇,包括Chemical Engineering Journal、Small、Journal of Petroleum Science and Engineering、International Journal of Thermal Sciences 等。zhaoshuai6074@cumt.edu.cn   
作者简介:  孙志辉,2012年9月至2021年6月,先后获苏州大学学士学位、博士学位。2021年7月苏州大学能源学院新能源科学与工程专业博士毕业后到中国矿业大学工作至今,进入中国矿业大学矿业工程博士后流动站工作。主要从事矿山功能材料和高比能储能器件方面的研究,包括热电协同转化、固废原位改性处置、绿色开采等。发表学术论文10余篇,包括Advanced Energy Materials、Small、ACS Applied Materials & Interfaces、Journal of Materials Che-mistry A 等。
引用本文:    
孙志辉, 赵帅. “双碳”背景下煤矸石高附加值功能化改性技术现状与展望[J]. 材料导报, 2023, 37(S1): 23040034-10.
SUN Zhihui, ZHAO Shuai. Present Situation and Prospect of High Value-added Functional Modification Technology of Coal Gangue Under the Background of ‘Carbon Peaking and Carbon Neutrality Goals'. Materials Reports, 2023, 37(S1): 23040034-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb. 23040034  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23040034
1 Li Z, Xue J, Zhu Z L, et al. Conservation and Utilization of Mineral Resources, 2021, 41(6), 165(in Chinese).
李振, 雪佳, 朱张磊, 等. 矿产保护与利用, 2021, 41(6), 165.
2 Duan X, Huang Y, Li Y, et al. Energy, 2023, 284(19), 31385.
3 Li J, Wang J. Journal of Cleaner Production, 2019, 239, 117946.
4 Yang X G, Li X L, Wang K Z, et al. Acta Ecologica Sinica, 2022, 42(19), 7740(in Chinese).
杨鑫光, 李希来, 王克宙, 等. 生态学报, 2022, 42(19), 7740.
5 Li P, Xia Y P, Zhang L K. Geology of Shaanxi, 2021, 39(2), 96(in Chinese).
李鹏, 夏元鹏, 张立魁, 等. 陕西地质, 2021, 39(2), 96.
6 Li H, Yang C M. Journal of Natural Science of Hunan Normal University, 2023.
7 Gao S, Zhang S, Guo L. Materials, 2021, 14(22), 6803.
8 Zhang Y, Ling T C. Construction and Building Materials, 2020, 234, 117424.
9 Zhang X, Li C, Zheng S, et al. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1.
10 Linhares T, Amorim M T, Duraes L. Journal of Materials Chemistry A, 2019, 7(40), 22768.
11 Du A, Zhou B, Zhang Z, et al. Materials, 2013, 6(3), 941.
12 Slosarczyk A, Vashchuk A, Klapiszewski L. Polymers, 2022, 14(7), 1456.
13 Liu B, Liu M X, Chen X P. Journal of Chemical Industry and Engineering, 2017, 68(5), 2096(in Chinese).
刘博, 刘墨祥, 陈晓平. 化工学报, 2017, 68(5), 2096.
14 Zhu J, Guo S, Li X. RSC Advances, 2015, 5(125), 103656.
15 Gu J, Ji C, Fu R, et al. Gels, 2022, 8(3), 165.
16 Xia C K, Li S M, Hu B. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 607(in Chinese).
夏晨康, 李淑敏, 胡博, 等. 硅酸盐通报, 2022, 41(2), 607.
17 Han L, Ren W, Wang B, et al. Fuel, 2019, 253, 1184.
18 Cui L, Cheng F, Zhou J. Separation and Purification Technology, 2016, 167, 45.
19 Mazrouei S Z, Salimian S, Khoddami A, et al. Materials Research Express, 2019, 6(8), 085059.
20 Chen G L, Hu P W, Zhang Y, et al. Conservation and Utilization of Mineral Resources, 2021, 41(3), 166(in Chinese).
程港莉, 胡佩伟, 张炎, 等. 矿产保护与利用, 2021, 41(3), 166.
21 Zhou X, Jiangxi Chemical Industry, 2021, 37(3), 52(in Chinese).
周翔. 江西化工, 2021, 37(3), 52.
22 Zhang X, Zhao R, Zhang N, et al. Applied Catalysis B: Environmental, 2020, 263, 118316.
23 Lu M, Xiong Z, Fang K, et al. ACS Omega, 2020, 5(41), 26335.
24 Li Y, Yang X G, Cao L L. Acta Materiae Compositae Sinica, 2017, 34(8), 1847(in Chinese).
李燕, 杨旭光, 曹林林. 复合材料学报, 2017, 34(8), 1847.
25 Shang R R, Han T, Jin X Z. Bulletin of the Chinese Ceramic Society, 2019, 38(4), 1211(in Chinese).
尚瑞瑞, 韩涛, 靳秀芝. 硅酸盐通报, 2019, 38(4), 1211.
26 Zhang K. Journal of Safety and Environment, 2021, 21(6), 2774(in Chinese).
张坤. 安全与环境学报, 2021, 21(6), 2774.
27 Bu N, Liu X, Song S, et al. Advanced Powder Technology, 2020, 31(7), 2699.
28 Wang S Y, Wang X L, Zang Y. Applied Chemical Industry, 2019, 48(5), 1071(in Chinese).
王思阳, 王晓丽, 臧晔. 应用化工, 2019, 48(5), 1071.
29 Jin Y, Liu Z, Han L, et al. Journal of Hazardous Materials, 2022, 423, 127027.
30 Mohammadi R, Azadmehr A, Maghsoudi A. Journal of Environmental Chemical Engineering, 2019, 7(6), 103494.
31 Lin P C, Du M L, Ai Q T, et al. Applied Chemical Industry, 2021, 50(3), 641(in Chinese).
林鹏程, 杜美利, 艾庆腾, 等. 应用化工, 2021, 50(3), 641.
32 Qiu J, Zhu M, Zhou Y, et al. Construction and Building Materials, 2021, 294, 123563.
33 Wu C, Zhang C, Li J, et al. Journal of Cleaner Production, 2022, 377, 134310.
34 Shi J J, Deng Y X, Sun G L. New Building Materials, 2020, 47(12), 103(in Chinese).
石纪军, 邓一星, 孙国梁. 新型建筑材料, 2020, 47(12), 103.
35 Sun X G, Ma Z Y, Zhao J Q, et al. Metal Mine, 2021(8), 214(in Chinese).
孙晓刚, 马征宇, 赵家琪, 等. 金属矿山, 2021(8), 214.
36 Liu J G, Li X W, He T. Journal of China Coal Society, 2020, 45(1), 141(in Chinese).
刘建功, 李新旺, 何团. 煤炭学报, 2020, 45(1), 141.
37 Sun X K. Coal Science and Technology, 2020, 48(9), 48(in Chinese).
孙希奎. 煤炭科学技术, 2020, 48(9), 48.
38 Zhu L, Pan H, Gu W Z, et al. Journal of China Coal Society, 2021, 46(S2), 629(in Chinese).
朱磊, 潘浩, 古文哲, 等. 煤炭学报, 2021, 46(S2), 629.
39 Li Y L, Lu B, Yang R S, et al. Journal of China Coal Society, 2022, 47(3), 1055(in Chinese).
李永亮, 路彬, 杨仁树, 等. 煤炭学报, 2022, 47(3), 1055.
40 Wang M, Liu L, Zhang B, et al. Journal of China Coal Society, 2020, 45(4), 1336(in Chinese).
王美, 刘浪, 张波, 等. 煤炭学报, 2020, 45(4), 1336.
41 Wang P, Mao X, Chen S E. International Journal of Mining Science and Technology, 2019, 29(5), 721.
42 Liu H, Zhang J, Zhang W, et al. Minerals, 2019, 9(1), 55.
43 Du X J, Feng G R, Qi T Y, et al. Journal of China Coal Society, 2019, 44(3), 821(in Chinese).
杜献杰, 冯国瑞, 戚庭野, 等. 煤炭学报, 2019, 44(3), 821.
44 Miao K J, Tu S H, Liu X, et al. Journal of China Coal Society, 2021, 46(4), 1232(in Chinese).
苗凯军, 屠世浩, 刘迅, 等. 煤炭学报, 2021, 46(4), 1232.
45 Kan J G, Wu J K, Zhang N, et al. Journal of Mining and Safety Engineering, 2018, 35(5), 877(in Chinese).
阚甲广, 武精科, 张农, 等. 采矿与安全工程学报, 2018, 35(5), 877.
46 Guo L Z, Zhou M, Wang L J, et al. Journal of Building Materials, 2022, 25(10), 1092(in Chinese).
郭凌志, 周梅, 王丽娟, 等. 建筑材料学报, 2022, 25(10), 1092.
47 Zhang J X, Zhang Q, Ju F, et al. Journal of China Coal Society, 2019, 44(1), 64(in Chinese).
张吉雄, 张强, 巨峰, 等. 煤炭学报, 2019, 44(1), 64.
48 Wang H, Fang X, Du F, et al. Science of the Total Environment, 2021, 772, 145606.
49 Li B, Liu G, Gao W, et al. Fuel, 2020, 268, 117284.
50 Ding D, Guo L, Mu Y, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(1), 254.
51 Zheng C Y. Kaolin modification and the supported nickel catalyst for syngas methanation. Master's Thesis, China University of Mining and Technology, China, 2016(in Chinese).
郑传月. 高岭土改性及其负载型Ni基催化剂合成气甲烷化性能研究. 硕士学位论文, 中国矿业大学, 2016.
52 Lu M, Xiong Z, Fang K, et al. Renewable Energy, 2020, 160, 385.
53 Zhang S, Zhang N, Zhao W, et al. Solid State Ionics, 2021, 371, 115772.
54 Mei J, Zhang Q, Peng H, et al. Journal of Materials Science & Technology, 2022, 111, 181.
55 Sun Z, Hu Y, Zeng K, et al. Small, 2023, 19(27), 2208145.
56 Wang G F, Ren S H, Pang Y H, et al. Coal Science and Technology, 2021, 49(9), 1(in Chinese).
王国法, 任世华, 庞义辉, 等. 煤炭科学技术, 2021, 49(9), 1.
57 Hu Z Q, Xiao W, Zhao Y L. Journal of China Coal Society, 2020, 45(1), 351(in Chinese).
胡振琪, 肖武, 赵艳玲. 煤炭学报, 2020, 45(1), 351.
58 Kang H P, Wang G F, Wang S M, et al. Strategic Study of CAE, 2021, 23(5), 130(in Chinese).
康红普, 王国法, 王双明, 等. 中国工程科学, 2021, 23(5), 130.
59 Mu X, Pan H, He P, et al. Advanced Materials, 2020, 32(27), 1903790.
60 Sun Z, Zhao S, Zhang J, Batteries, 2023, 9(4), 205.
61 Zhu Y Y, Wang A G, Sun D S, et al. Journal of China Coal Society, 2021, 46(11), 3657(in Chinese).
朱愿愿, 王爱国, 孙道胜, 等. 煤炭学报, 2021, 46(11), 3657.
62 Jia M. Conservation and Utilization of Mineral Resources, 2019, 39(4), 46(in Chinese).
贾敏. 矿产保护与利用, 2019, 39(4), 46.
63 Xie H P. Journal of China Coal Society, 2019, 44(5), 1283(in Chinese).
谢和平. 煤炭学报, 2019, 44(5), 1283.
64 Yuan L. Journal of China Coal Society, 2021, 46(3), 716(in Chinese).
袁亮. 煤炭学报, 2021, 46(3), 716.
65 Guo P Y, Wang M, Sun X M, et al. Journal of China Coal Society, 2022, 47(6), 2193(in Chinese).
郭平业, 王蒙, 孙晓明, 等. 煤炭学报, 2022, 47(6), 2193.
66 Pu H, Xu J C, Bian Z F, et al. Journal of China Coal Society, 2022, 47(6), 2243(in Chinese).
浦海, 许军策, 卞正富, 等. 煤炭学报, 2022, 47(6), 2243.
67 Huang Y F, Zhu T. China Mining Magazine, 2021, 30(S1), 5(in Chinese).
黄云峰, 朱涛. 中国矿业, 2021, 30(S1), 5.
68 Zhang Q, Wang Y B, Zhang J X, et al. Journal of China Coal Society, 2022, 47(7), 2546(in Chinese).
张强, 王云搏, 张吉雄, 等. 煤炭学报, 2022, 47(7), 2546.
69 Zhang B, Xue P Y, Liu L, et al. Journal of China Coal Society, 2021, 46(9), 2824(in Chinese).
张波, 薛攀源, 刘浪, 等. 煤炭学报, 2021, 46(9), 2824.
70 Gao P, Liu Q M, Wei J H, et al. Building Energy Efficiency, 2019, 47(2), 21(in Chinese).
高朋, 刘启明, 魏俊辉, 等. 建筑节能, 2019, 47(2), 21.
71 Pan J H, Sun T H. Journal of China University of Geosciences (Social Sciences Edition), 2022, 22(5), 45(in Chinese).
潘家华, 孙天弘. 中国地质大学学报(社会科学版), 2022, 22(5), 45.
72 Hu A G. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3), 1(in Chinese).
胡鞍钢. 北京工业大学学报(社会科学版), 2021, 21(3), 1.
73 Yan H. Staged cracking mechanism and crack propagation law of supercritical CO2 fracturing coal mass. Ph. D. Thesis, China University of Mining and Technology, China, 2020(in Chinese).
闫浩. 超临界CO2压裂煤体分阶段致裂机理及裂缝扩展规律. 博士学位论文, 中国矿业大学, 2020.
74 Song X M, Wang F, Ma D S, et al. Petroleum Exploration and Development, 2023, 50(1), 1(in Chinese).
宋新民, 王峰, 马德胜, 等. 石油勘探与开发, 2023, 50(1), 1.
75 Qin J X, Li Y L, Wu D B, et al. Petroleum Geology and Recovery Efficiency, 2020, 27(1), 20(in Chinese).
秦积舜, 李永亮, 吴德彬, 等. 油气地质与采收率, 2020, 27(1), 20.
76 Xiang Y, Hou L, Du M, et al. Petroleum Geology and Recovery Efficiency, 2022, 29(4), 1(in Chinese).
向勇, 侯力, 杜猛, 等. 油气地质与采收率, 2022, 29(4), 1.
77 Wang S M, Shen Y J, Sun Q, et al. Journal of China Coal Society, 2022, 47(1), 45(in Chinese).
王双明, 申艳军, 孙强, 等. 煤炭学报, 2022, 47(1), 45.
78 Xie H, Yue H, Zhu J, et al. Engineering, 2015, 1(1), 150.
79 Xie H, Wang Y, He Y, et al. Science China Technological Sciences, 2014, 57(12), 2335.
80 Hu L, Yang Z B, Xiong X Y, et al. Strategic Study of CAE, 2022, 24(3), 118(in Chinese).
胡亮, 杨志宾, 熊星宇, 等. 中国工程科学, 2022, 24(3), 118.
[1] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[2] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[3] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[4] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[5] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[6] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[7] 冉德钦, 安斌, 李轶然, 惠冰, 李艳召, 宋光远, 宋海民. 基于多孔介质煤矸石路基汞元素的扩散规律研究[J]. 材料导报, 2020, 34(Z1): 255-257.
[8] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[9] 王长龙, 张凯帆, 左伟, 叶鹏飞, 赵高飞, 任真真, 林庚. 煤矸石粉煤灰加气混凝土的制备及性能[J]. 材料导报, 2020, 34(24): 24034-24039.
[10] 刘朋, 王爱国, 刘开伟, 马瑞, 徐海燕, 孙道胜, 经验. 粒状煤矸石制备活性粉体材料的颜色转变及其量化表征[J]. 材料导报, 2020, 34(16): 16037-16042.
[11] 刘灏, 李青, 黄秉章, 黄榜彪, 李杰能, 王锐, 谢伟标, 梁晓前. 煤矸石烧结页岩砖材的耐久性研究[J]. 材料导报, 2019, 33(Z2): 229-232.
[12] 关虓, 邱继生, 潘杜, 郑娟娟, 王民煌. 冻融环境下煤矸石混凝土损伤度评估方法研究[J]. 材料导报, 2018, 32(20): 3546-3552.
[13] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[14] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[15] 熊锐, 杨晓凯, 杨发, 刘子铭, 王小雯, 陈华鑫. 活化煤矸石改性沥青胶浆粉胶比确定及粘温特性研究*[J]. 《材料导报》期刊社, 2017, 31(2): 121-125.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed