Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3546-3552    https://doi.org/10.11896/j.issn.1005-023X.2018.20.010
  无机非金属及其复合材料 |
冻融环境下煤矸石混凝土损伤度评估方法研究
关虓, 邱继生, 潘杜, 郑娟娟, 王民煌
西安科技大学建筑与土木工程学院,西安 710054;
Research on the Evaluation Method of Damage Degree of Coal Gangue Concrete Under Freezing-Thawing
GUAN Xiao, QIU Jisheng, PAN Du, ZHENG Juanjuan, WANG Minhuang
School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054;
下载:  全 文 ( PDF ) ( 4202KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究对不同取代率的煤矸石粗集料混凝土冻融后的损伤演化行为及损伤评估方法进行了研究,依据超声波评测法确定损伤层厚度,并对冻融后煤矸石混凝土的抗压强度、损伤层厚度、损伤层特征值的变化规律进行分析;提出以便于工程检测的损伤层作为煤矸石混凝土冻融损伤的评价标准,并通过考虑损伤区域材料的残余强度对所测得的损伤层进行修正。研究结果表明:随着冻融次数的增加,煤矸石混凝土的抗压强度与损伤层特征值逐渐减小,损伤层厚度逐渐增大;引入损伤层修正系数后,冻融损伤度评估结果的精确性显著提高,且随着冻融次数的增加,修正系数逐渐增大,反映出损伤区域材料的残余强度不断减小,实际损伤度逐渐增大的演化行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关虓
邱继生
潘杜
郑娟娟
王民煌
关键词:  煤矸石混凝土  冻融循环  损伤层厚度  残余强度  损伤度    
Abstract: In this paper, the damage evolution behavior and the evaluation method of coal gangue aggregate concrete with different replacement rate under freezing-thawing were studied. The damage layer thickness was determined by ultrasonic evaluation method. The change rule of compressive strength and damage layer thickness and damage layer characteristic value of coal gangue concrete after freezing-thawing were analysed. The damage layer of coal gangue concrete that is convenient for engineering detection was proposed as an evaluation standard for the freeze-thaw damage, and the damage layer was modified by the residual strength of coal gangue concrete in the damage area. The results showed that, the compressive strength and damage layer characteristic value of concrete gradually decreased with the increase of freeze-thaw cycles, and the damage layer thickness gradually increased. After considering the correction coefficient, the evaluation accuracy of freeze-thaw damage degree was improved significantly. With the increase of freeze-thaw cycles, the correction coefficient gradually increased, the law reflected the actual phenomenon that the residual strength of coal gangue concrete in damage area gradually decreased and the freeze-thaw damage degree gradually increased.
Key words:  coal gangue concrete    freeze-thaw    damage layer thickness    residual strength    damage degree
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TU37  
基金资助: 国家自然科学青年基金(51808443);中国博士后科学基金(2017M613166);陕西省自然科学基金(2018JM5167);西部绿色建筑国家重点实验室开放基金(LSKF201808)
作者简介:  关虓:男,1984年生,博士,讲师,主要从事混凝土结构耐久性研究 E-mail:86484869@qq.com 邱继生:通信作者,男,1963年生,博士,副教授,硕士研究生导师,主要从事混凝土结构耐久性、结构可靠度及混凝土结构抗震理论方面的研究 E-mail:358896111@qq.com
引用本文:    
关虓, 邱继生, 潘杜, 郑娟娟, 王民煌. 冻融环境下煤矸石混凝土损伤度评估方法研究[J]. 材料导报, 2018, 32(20): 3546-3552.
GUAN Xiao, QIU Jisheng, PAN Du, ZHENG Juanjuan, WANG Minhuang. Research on the Evaluation Method of Damage Degree of Coal Gangue Concrete Under Freezing-Thawing. Materials Reports, 2018, 32(20): 3546-3552.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.010  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3546
1 Ma Jun, Yu Zhongming, Shu Shihai, et al. Environmental damage of coal gangue to mining area and its control measures[J]. Coal Engineering,2015,47(10):70(in Chinese).
马骏,郁钟铭,舒仕海,等.煤矸石对矿区的环境危害及治理措施[J].煤炭工程,2015,47(10):70.
2 Zhang Kaifeng, Wu Xiong, Yang Wen, Research progress of utilizing coal gangue as resource building materials[J].Materials Review,2013,27(z1):290(in Chinese).
张凯峰,吴雄,杨文.煤矸石建材资源化的研究进展[J].材料导报,2013,27(z1):290.
3 Fan Jinshuan. Study on the harmfulness of coal gangue to environment and its exploitation[J]. Resource Developent and Market,2008,24(1):56(in Chinese).
樊金拴.煤矸石对环境的危害与开发利用研究[J].资源开发与市场,2008,24(1):56.
4 Liu Di. Environmental hazards and comprehensive utilization of coal gangue[J]. Journal of Meteorology and Environemnt,2006,22(3):60(in Chinese).
刘迪.煤矸石的环境危害及综合利用研究[J].气象与环境学报,2006,22(3):60.
5 Fan Jingsen, Shang Zhongsen, Hun Lingyun,et al. Environmental pollution caused by coal gangue and its prevention[J]. Heilongjiang Science and Technology Information,2008,30(30):30(in Chinese).
樊景森,尚忠森,浑凌云,等.煤矸石对环境的污染及防治[J].黑龙江科技信息,2008,30(30):30.
6 Guo Yanxia, Zhang Yuanyuan, Cheng Fangqin. The industrialization and prospect of the comprehensive utilization of coal gangue[J]. Journal of Chemical Industry,2014,65(7):2443(in Chinese).
郭彦霞,张圆圆,程芳琴.煤矸石综合利用的产业化及其展望[J].化工学报,2014,65(7):2443.
7 Guo Jianqiu. Current situation and prospect of coal gangue comprehensive utilization in China[J]. Environment and Development,2014,26(3):102(in Chinese).
郭建秋.我国煤矸石综合利用现状及前景展望[J].环境与发展,2014,26(3):102.
8 Guan Jie, Li Yingshun.Current situation and prospect of coal gangue comprehensive utilization[J]. Environment and Sustainable Development,2008(1):34(in Chinese).
关杰,李英顺.煤矸石综合利用现状及前景[J].环境与可持续发展,2008(1):34.
9 Sun Jiaying. Study on properties of concrete with coal gangue slag to replace natural sand[J].Journal of Building Materials,2012,15(2):179(in Chinese).
孙家瑛.用煤矸石炉渣取代天然砂的混凝土性能研究[J].建筑材料学报,2012,15(2):179.
10 Zhou Mei, Li Gaonian, Zhang Qian, et al. Study on application of spontaneous combustion coal gangue aggregate in ready-mixed concrete[J]. Journal of Building Materials,2015,18(5):830(in Chinese).
周梅,李高年,张倩,等. 自燃煤矸石骨料在预拌混凝土中的应用研究[J]. 建筑材料学报,2015,18(5):830.
11 Wang Zhenshuang, Tan Xiaoqian, Zhou Mei, et al. Influnence of particle size of coal gangue coarse aggregates on concrete properties[J].Journal of Shenyang University (Natural Science),2016,28(1):69(in Chinese).
汪振双,谭晓倩,周梅,等.煤矸石粗集料粒径对混凝土性能的影响[J].沈阳大学学报(自然科学版),2016,28(1):69.
12 Cui Zhenglong, Hao Jingli, Chen Long, et al. Experimental study on strength and drying shrinkage crack of spontaneous combustion gangue concrete[J].Non-Metallic Mines,2015,38(6):76(in Chinese).
崔正龙,郝敬力,陈龙,等.自燃煤矸石混凝土强度及干燥收缩裂缝试验研究[J].非金属矿,2015,38(6):76.
13 Cui Zhenglong, Li Jing. Effect of coarse aggregate with different water absorption on strength and drying shrink-age of concrete[J].Bulletin of Chinese Ceramic Society,2016,35(8):2396(in Chinese).
崔正龙,李静.不同吸水率粗骨料对混凝土强度和干燥收缩性能的影响[J].硅酸盐通报,2016,35(8):2396.
14 Zhou Mei, Tian Shuang, Guo Tao, et al. Experimental research on the concrete using spontaneous combustion gangue as full active material[J].Bulletin of Chinese Ceramic Society,2011,30(5):1221(in Chinese).
周梅,田爽,郭涛,等.自燃煤矸石配制混凝土的试验研究[J].硅酸盐通报,2011,30(5):1221.
15 Li Yongjing, Lei Changchun, Shi Mingyue, et al. Effect of fly ash content on the performance of coal gangue aggregate concrete[J].Non-Metallic Mines,2016,39(5):61(in Chinese).
李永靖,雷长春,史明月,等.粉煤灰掺量对煤矸石骨料混凝土性能影响研究[J].非金属矿,2016,39(5):61.
16 Zhang Peng, Fang Guangxiu. Experimental study on compressive properties of gangue concrete in Yanbian region[J].Sichuan Building Science,2016,42(1):104(in Chinese).
詹鹏,方光秀.延边地区掺煤矸石的混凝土抗压强度试验研究[J].四川建筑科学研究,2016,42(1):104.
17 Gao Honghong, Zhai Yue, Zhou Mei, et al. Experimental study on polypropylene fiber reinforce concrete with sopontaneous combustion coal gangue lightweight aggregate[J].Bulletin of the Chinese Cera-mic Society,2008,27(6):1156(in Chinese).
高红江,翟越,周梅,等.聚丙烯纤维自燃煤矸石轻集料混凝土的试验研究[J].硅酸盐通报,2008,27(6):1156.
18 Li Yongjing, Xing Yang, Zhang Xu, et al. Experimental study on the durability of the concrete with coal gangue aggregate[J].Journal of China Coal Society,2013,38(7):1215(in Chinese).
李永靖,邢洋,张旭,等.煤矸石骨料混凝土的耐久性试验研究[J].煤炭学报,2013,38(7):1215.
19 Li Qingwen, Zhang Xiangdong, Li Guixiu, et al. Study on carbonation depth of spontaneous combustion coal gangue lightweight aggregate concrete[J].Chinese Journal of Environmental Engineering,2016,10(5):2616(in Chinese).
李庆文,张向东,李桂秀,等.自燃煤矸石轻骨料混凝土碳化深度研究[J].环境工程学报,2016,10(5):2616.
20 Li Yongjing, Xing Yang. Experimental study on the Re-sistance to sulfate attack of coal gangue concrete[J].Non-Metallic Mines,2016,39(1):8(in Chinese).
李永靖,邢洋.煤矸石混凝土抗硫酸侵蚀试验研究[J].非金属矿,2016,39(1):8.
21 Li Qingwen, Li Guixiu, Li Yang. Durability study on coal gangue concrete under alternative effect of freezing-thawing and carbonization[J].Non-Metallic Mines,2015,39(4):39(in Chinese).
李庆文,李桂秀,李洋.冻融和碳化交替作用煤矸石混凝土耐久性研究[J].非金属矿,2015,39(4):39.
22 Zhang Xiangdong, Li Qingwen. Study on properties deterioration of coal gangue concrete on coupling effects of freezing-thawing and acid rain[J].Non-Metallic Mines,2016,39(5):49(in Chinese).
张向东,李庆文.冻融-酸雨耦合下煤矸石混凝土性能裂化研究[J].非金属矿,2016,39(5):49.
23 中华人民共和国住房和城乡建设部.GB/T 50082-2009普通混凝土长期性能和耐久性试验方法标准[S].北京:中国建筑工业出版社,2009.
24 陕西省建筑科学研究设计院,上海同济大学.CES 21:2000超声法检测混凝土缺陷技术规程[S].北京,2000.
25 Mehta P K, Monteiro P. Concrete: Microstructure, properties, and materials[M]. New York: McGraw-Hill Professional,2006.
26 Qiu Jisheng, Zheng Juanjuan, Guan Xiao, et al. Study on capillary water absorption properties of coal gangue concrete under freezing-thawing circumstance[J].Journal of Building Materials,2017,20(6):881(in Chinese).
邱继生,郑娟娟,关虓,等.冻融环境下煤矸石混凝土毛细吸水性能研究[J].建筑材料学报,2017,20(6):881.
[1] 南雪丽, 王超杰, 刘金欣, 韩博, 杨蓝蓝. 冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 177-181.
[2] 余自若, 沈捷, 贾方方, 安明喆. 超高性能混凝土与普通混凝土的黏结抗冻性能*[J]. CLDB, 2017, 31(23): 138-144.
[3] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed