Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 117-120    https://doi.org/10.11896/j.issn.1005-023X.2017.02.025
  材料研究 |
高强混凝土材料细观冻融损伤与抗压强度的关系*
秦晓川, 孟少平, 涂永明
东南大学土木工程学院, 南京 210096;
Relationship Between Mesoscopic Freeze-thaw Damage and Compressive Strength of High-strength Concrete Material
QIN Xiaochuan, MENG Shaoping, TU Yongming
School of Civil Engineering, Southeast University, Nanjing 210096;
下载:  全 文 ( PDF ) ( 1658KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高强混凝土冻融损伤机理及其与抗压强度之间的关系,采用RapidAir结合金相显微镜的方法,实现对混凝土细观冻融损伤的连续观察,探究了细观结构对冻融的敏感程度以及细观破坏对宏观破坏的影响规律。结果表明:对高强混凝土而言,较低的含气量和较大的气泡间隔系数并不意味着较差的抗冻性;孔隙群的冻融响应敏感,且微裂缝出现较早,该区域的缺陷增长能与冻融前期混凝土抗压强度线性下降很好地对应,但此时混凝土的抗压强度下降并不明显;相对孤立的孔和砂浆与粗骨料的界面过渡区较不敏感,这些区域出现损伤后,混凝土的抗压强度逐渐非线性下降,预示着混凝土即将冻碎。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦晓川
孟少平
涂永明
关键词:  高强混凝土  冻融循环  细观损伤  定量分析  抗压强度    
Abstract: In order to figure out the freeze-thaw damage mechanism of high-strength concrete and its relationship with compressive strength, a method combining RapidAir and digital metalloscope was employed to investigate the meso-damages of concrete throughout the freeze-thaw test. The meso-structure′s sensitivity to freeze-thaw damage and the relationship between meso-damage and macro-damage were studied. Results show that high-strength concrete with low air content and large spacing factor does not result in poor freeze-thaw resistance. Pore groups are sensitive to freeze-thaw damage, and micro-cracks tend to appear early between them. This phenomenon corresponds well with the compressive strength loss in the early stage of freeze-thaw cycles (FTCs), but these micro-cracks will not lead to a drastic compressive strength loss. Isolated pore and interfacial transition zone are not sensitive to freeze-thaw damage. If these areas are damaged, the compressive strength will drop non-linearly, indicating the coming macroscopic failure.
Key words:  high-strength concrete    freeze-thaw cycle    mesoscopic damage    quantitative analysis    compressive strength
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TU502  
基金资助: *国家自然科学基金(50978224;51378104)
作者简介:  秦晓川:男,1985年生,博士研究生,主要从事混凝土材料及结构耐久性研究 E-mail:qinxc@seu.edu.cn 涂永明:通讯作者,男,1978年生,博士,副教授,主要从事混凝土材料及结构耐久性、桥梁安全等方面的研究 E-mail:tuyongming@seu.edu.cn
引用本文:    
秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
QIN Xiaochuan, MENG Shaoping, TU Yongming. Relationship Between Mesoscopic Freeze-thaw Damage and Compressive Strength of High-strength Concrete Material. Materials Reports, 2017, 31(2): 117-120.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.025  或          https://www.mater-rep.com/CN/Y2017/V31/I2/117
1 Powers T C. Working hypothesis for further studies of frost resis-tance of concrete[J]. Am Concr Institute J,1945,16(4):245.
2 Jacobsen S, Sellevold E J,Matala S.Frost durability of high stren-gth concrete: Effect of internal cracking on ice formation[J]. Cem Concr Res,1996,26(6):919.
3 Hasan M, et al. Stress-strain model of concrete damaged by freezing and thawing cycles[J]. J Adv Concr Technol,2004,2(1):89.
4 Cao Dafu, Fu Lizhi, Yang Zhongwei. Experimental study on tensile properties of concrete after freeze-thaw cycles[J]. J Build Mater,2012,15(1):48(in Chinese).
曹大富, 富立志, 杨忠伟. 冻融循环作用下混凝土的受拉性能研究[J]. 建筑材料学报,2012,15(1):48.
5 Cao Dafu, Fu Lizhi, Yang Zhongwei, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycles[J]. J Build Mater,2013,16(1):17(in Chinese).
曹大富,富立志,杨忠伟,等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报,2013,16(1):17.
6 Cao Dafu, Qin Xiaochuan, Meng Shaoping, et al. Evaluation of prestress losses in prestressed concrete specimens subjected to freeze-thaw cycles[J]. Struct Infrastructure Eng,2016,12(2):159.
7 冯乃谦,邢锋. 混凝土与混凝土结构的耐久性[M]. 北京:机械工业出版社,2009.
8 Cohen M D, Zhou Y, Dolch W L. Non-air-entrained high-strength concrete-Is it frost resistant?[J]. Aci Mater J,1992,89(4):406.
9 Jacobsen S, Marchand J, Hornain H. SEM observations of the microstructure of frost deteriorated and self-healed concretes[J]. Cem Concr Res,1995,25(8):1781.
10 Yang Zhifu, Weiss W J, Olek J.Water transport in concrete dama-ged by tensile loading and freeze-thaw cycling[J]. J Mater Civil Eng,2006,18(3):424.
11 Liu Lin, Shen Dejian, Chen Huisu, et al. Analysis of damage deve-lopment in cement paste due to ice nucleation at different temperatures[J]. Cem Concr Compos,2014,53:1.
12 Pigeon M, Talbot C, et al. Surface microstructure and scaling resistance of concrete[J]. Cem Concr Res,1996,26(10):1555.
13 Jacobsen S, Christian G H, et al. High strength concrete-freeze/thaw testing and cracking[J]. Cem Concr Res,1995,25(8):1775.
14 Li Shuguang, Chen Gaixin, et al. Quantitative damage evaluation of air-entrained concrete suffered freezing-thawing by digital-image-processing technique[J]. J Chinese Ceram Soc,2014,42(8):951.
15 Li Wenting, Sun Wei, Jiang Jinyang. Damage of concrete experiencing flexural fatigue load and closed freeze/thaw cycles simultaneously[J]. Construct Build Mater,2011,25(5):2604.
16 Diamond S. Mercury porosimetry:An inappropriate method for the measurement of pore size distributions in cement-based materials[J]. Cem Concr Res,2000,30(10):1517.
17 Sicat E, Gong Fuyuan, Zhang Dawei, et al. Change of the coefficient of thermal expansion of mortar due to damage by freeze thaw cycles[J]. J Adv Concr Technol,2013,11(12):333.
18 Gong Fuyuan,et al.Stress analysis for concrete materials under multiple freeze-thaw cycles[J].J Adv Concr Technol,2015,13(3):124.
19 Suzuki T, Ogata H, Takada R, et al. Use of acoustic emission and X-ray computed tomography for damage evaluation of freeze-thawed concrete[J]. Construction Build Mater,2010,24(12):2347.
20 ASTM. ASTMC457/C457M-12 Standard test method for microsco-pical determination of parameters of the air-void system in hardened concrete[S]. ASTM,2012.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[10] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[11] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[12] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[13] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[14] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[15] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed