Study on Interaction Evaluation and Its Micro-mechanism of Coal Gangue Powder and Asphalt
WANG Zhichen1,2,3, GUO Naisheng1,2,*, JIN Xin1, YU Ankang1
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China 2 Liaoning Key Laboratory of Marine Environmental Bridge and Tunnel Engineering, Dalian 116026, Liaoning, China 3 School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Abstract: The interaction between mineral fillers and asphalt determines the road performance of asphalt mixture. In order to evaluate the interaction ability between coal gangue powder and asphalt, and reveal the interaction mechanism, rheological properties of coal gangue powder asphalt mastic were investigated by means of the dynamic shear rheometer (DSR) test. Master curves of dynamic shear modulus of asphalt mastic were constructed by generalized sigmoidal function and WLF equation. The interaction ability between coal gangue powder and asphalt was evaluated based on the coefficient C of Palierne model. A parameter fitting method was proposed to weaken the dependence of C value on the volume fraction of coal gangue powder. The interaction micro-mechanism was analyzed by using SEM and AFM experiment. The results show that coal gangue powder exhibits a stronger interaction ability with asphalt than limestone powder by the comparison of coefficient C. Coarse surface and open pores of coal gangue powder are easier to form interlocking interface with asphalt. Asphalt mastic produces more bee structures than base asphalt due to the interaction between coal gangue powder and asphalt, and forms a dense network structure system, so that coal gangue powder has a stronger interaction ability with asphalt.
王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
WANG Zhichen, GUO Naisheng, JIN Xin, YU Ankang. Study on Interaction Evaluation and Its Micro-mechanism of Coal Gangue Powder and Asphalt. Materials Reports, 2022, 36(22): 21040248-7.
1 Wang J L, Tong W B, Chen M, et al. Coal Processing & Comprehensive Utilization, 2014(1), 61(in Chinese). 王玖玲, 童文彬, 陈民, 等. 煤炭加工与综合利用, 2014(1), 61. 2 Zhang J X, Sun H H, Wan J H, et al. Journal of Central South University Science and Technology, 2011, 42(2), 329(in Chinese). 张吉秀, 孙恒虎, 万建华, 等. 中南大学学报自然科学版, 2011, 42(2), 329. 3 Tian Y R, Zhang X R, Liu J F, et al. Science & Technology Review, 2020, 38(22), 106(in Chinese). 田怡然, 张晓然, 刘俊峰, 等. 科技导报, 2020, 38(22), 106. 4 Du Z Y. Study on road performance of emulsified asphalt coal gangue asphalt mixture. Master's Thesis, Shenyang Jianzhu University, China, 2020(in Chinese). 杜志远. 乳化沥青煤矸石沥青混合料路用性能研究. 硕士学位论文, 沈阳建筑大学, 2020. 5 Li W, Cheng P F, Li G D. Journal of Northeast Forestry University, 2009, 37(6), 54(in Chinese). 李伟, 程培峰, 李国栋. 东北林业大学学报, 2009, 37(6), 54. 6 Xiong R, Yang X K, Yang F, et al. Journal of Chongqing Jiaotong University Natural Science, 2015, 34(5), 44(in Chinese). 熊锐, 杨晓凯, 杨发, 等. 重庆交通大学学报自然科学版, 2015, 34(5), 44. 7 Feng X J, Zhao M L, Chen W, et al. Journal of Building Materials, 2019, 22(1), 117(in Chinese). 冯新军, 赵梦龙, 陈旺, 等. 建筑材料学报, 2019, 22(1), 117. 8 Yang X K, Xiong R, Fan T Q, et al. Materials Reports B:Research Papers, 2015, 29(6), 135(in Chinese). 杨晓凯, 熊锐, 范天奇, 等. 材料导报:研究篇, 2015, 29(6), 135. 9 Modarres A, Rahmanzadeh M. Construction and Building Materials, 2014, 66, 476. 10 Wu J R, Cui S C, Hong R B, et al. Journal of Building Materials, 2020, 23(5), 1167(in Chinese). 吴金荣, 崔善成, 洪荣宝, 等. 建筑材料学报, 2020, 23(5), 1167. 11 Zhang Y X, Lei Q, Luo R Z, et al. Journal of China & Foreign Highway, 2016, 36(3), 278(in Chinese). 张映雪, 雷强, 罗润洲, 等. 中外公路, 2016, 36(3), 278. 12 Tan Y Q, Wang D Q, Bian X, et al. Journal of Highway and Transportation Research and Development, 2012, 29(11), 6(in Chinese). 谭忆秋, 王大庆, 边鑫, 等. 公路交通科技, 2012, 29(11), 6. 13 Tan Y Q, Li X L, Zhou X Y, et al. Journal of Harbin Institute of Technology, 2009(11), 102(in Chinese). 谭忆秋, 李晓琳, 周兴业, 等. 哈尔滨工业大学学报, 2009(11), 102. 14 Tan Y Q, Li X L, Wu J T, et al. China Journal of Highway and Transport, 2012, 25(3), 65(in Chinese). 谭忆秋, 李晓琳, 吴建涛, 等. 中国公路学报, 2012, 25(3), 65. 15 Guo M. Study on interaction mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate. Ph.D. Thesis, Harbin Institute of technology, China, 2016(in Chinese). 郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究. 博士学位论文, 哈尔滨工业大学, 2016. 16 Ma X Y. Study on asphalt-filler interaction and prediction of asphalt mastic performance. Ph.D. Thesis, Chang'an University, China, 2019(in Chinese). 马晓燕. 沥青-填料交互作用效应与沥青胶浆性能预估研究. 博士学位论文, 长安大学, 2019. 17 Liu H, Luo R.Construction and Building Materials, 2017, 152, 259. 18 Xiong R, Qiao N, Chu C, et al. Journal of Jilin University Engineering and Technology Edition, 2020, 50(1), 183(in Chinese). 熊锐, 乔宁, 褚辞, 等.吉林大学学报工学版, 2020, 50(1), 183. 19 Wang Z C. Study on viscoelastic characterization and J-MRP prediction model of asphalt mixtures. Ph.D. Thesis, Chang'an University, China, 2018(in Chinese). 王志臣. 沥青混合料的黏弹性能表征及J-MRP预测模型研究. 博士学位论文, 长安大学, 2018 20 Palierne J F. Rheologica Acta, 1990, 29(3), 204. 21 Graebling D, Muller R. Colloids & Surfaces, 1991, 55, 89. 22 Ziegel K D, Romanov A. Journal of Applied Polymer Science, 2010, 17(4), 19. 23 Xing C, Liu L, Cui Y, et al. Fuel, 2020, 264, 116845.1. 24 Sun G Q, Pang Q, Sun D Q. Petroleum asphalt, 2016, 30(4), 18(in Chinese). 孙国强, 庞琦, 孙大权. 石油沥青, 2016, 30(4), 18.