Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 21040248-7    https://doi.org/10.11896/cldb.21040248
  无机非金属及其复合材料 |
煤矸石粉与沥青的交互作用评价及其微观机理研究
王志臣1,2,3, 郭乃胜1,2,*, 金鑫1, 于安康1
1 大连海事大学交通运输工程学院,辽宁 大连 116026
2 辽宁省近海桥遂工程重点实验室,辽宁 大连 116026
3 沈阳建筑大学交通与测绘工程学院,沈阳 110168
Study on Interaction Evaluation and Its Micro-mechanism of Coal Gangue Powder and Asphalt
WANG Zhichen1,2,3, GUO Naisheng1,2,*, JIN Xin1, YU Ankang1
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
2 Liaoning Key Laboratory of Marine Environmental Bridge and Tunnel Engineering, Dalian 116026, Liaoning, China
3 School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
下载:  全 文 ( PDF ) ( 5153KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 矿料与沥青的交互作用决定着沥青混合料的路用性能,为了评价煤矸石粉与沥青的交互作用能力并揭示交互作用机理,利用动态剪切流变仪(DSR)对煤矸石粉沥青胶浆的流变性能进行了测试,运用广义sigmoidal函数和WLF方程构建了沥青胶浆动态剪切模量主曲线。基于Palierne模型系数C对煤矸石粉与沥青的交互作用进行评价,提出了参数拟合法以减弱C值对煤矸石粉体积分数的依赖性,借助扫描电镜和原子力显微镜对交互作用的微观机理进行了分析。研究结果表明:通过交互作用评价系数C值比较得出煤矸石粉与沥青的交互作用强于石灰岩粉,煤矸石粉的粗糙表面及开口孔隙更容易与沥青形成嵌锁的界面结构,煤矸石粉与沥青发生交互作用后产生更多数量的“蜂状结构”,形成了密集交织的网状结构体系,从而使煤矸石粉与沥青具有更强的交互作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志臣
郭乃胜
金鑫
于安康
关键词:  道路工程  煤矸石粉  沥青胶浆  交互作用  微观机理    
Abstract: The interaction between mineral fillers and asphalt determines the road performance of asphalt mixture. In order to evaluate the interaction ability between coal gangue powder and asphalt, and reveal the interaction mechanism, rheological properties of coal gangue powder asphalt mastic were investigated by means of the dynamic shear rheometer (DSR) test. Master curves of dynamic shear modulus of asphalt mastic were constructed by generalized sigmoidal function and WLF equation. The interaction ability between coal gangue powder and asphalt was evaluated based on the coefficient C of Palierne model. A parameter fitting method was proposed to weaken the dependence of C value on the volume fraction of coal gangue powder. The interaction micro-mechanism was analyzed by using SEM and AFM experiment. The results show that coal gangue powder exhibits a stronger interaction ability with asphalt than limestone powder by the comparison of coefficient C. Coarse surface and open pores of coal gangue powder are easier to form interlocking interface with asphalt. Asphalt mastic produces more bee structures than base asphalt due to the interaction between coal gangue powder and asphalt, and forms a dense network structure system, so that coal gangue powder has a stronger interaction ability with asphalt.
Key words:  road engineering    coal gangue powder    asphalt mastic    interaction    micro-mechanism
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  U414  
基金资助: 中国博士后科学基金(2020M670731); 国家自然科学基金(51308084); 辽宁省自然科学基金(20180550173)
通讯作者:  * naishengguo@126.com   
作者简介:  王志臣,讲师。2018年毕业于长安大学,获道路材料科学与工程专业博士学位。同年进入大连海事大学交通运输工程学院从事博士后研究工作,主要从事道路材料微观及力学性能研究,近年来在国内外学术期刊发表文章10余篇。
郭乃胜,大连海事大学交通运输工程学院教授、博士研究生导师。2013—2014 年任美国密歇根理工大学访问学者。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文70余篇,其中SCI、EI 检索 40 余篇。
引用本文:    
王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
WANG Zhichen, GUO Naisheng, JIN Xin, YU Ankang. Study on Interaction Evaluation and Its Micro-mechanism of Coal Gangue Powder and Asphalt. Materials Reports, 2022, 36(22): 21040248-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040248  或          http://www.mater-rep.com/CN/Y2022/V36/I22/21040248
1 Wang J L, Tong W B, Chen M, et al. Coal Processing & Comprehensive Utilization, 2014(1), 61(in Chinese).
王玖玲, 童文彬, 陈民, 等. 煤炭加工与综合利用, 2014(1), 61.
2 Zhang J X, Sun H H, Wan J H, et al. Journal of Central South University Science and Technology, 2011, 42(2), 329(in Chinese).
张吉秀, 孙恒虎, 万建华, 等. 中南大学学报自然科学版, 2011, 42(2), 329.
3 Tian Y R, Zhang X R, Liu J F, et al. Science & Technology Review, 2020, 38(22), 106(in Chinese).
田怡然, 张晓然, 刘俊峰, 等. 科技导报, 2020, 38(22), 106.
4 Du Z Y. Study on road performance of emulsified asphalt coal gangue asphalt mixture. Master's Thesis, Shenyang Jianzhu University, China, 2020(in Chinese).
杜志远. 乳化沥青煤矸石沥青混合料路用性能研究. 硕士学位论文, 沈阳建筑大学, 2020.
5 Li W, Cheng P F, Li G D. Journal of Northeast Forestry University, 2009, 37(6), 54(in Chinese).
李伟, 程培峰, 李国栋. 东北林业大学学报, 2009, 37(6), 54.
6 Xiong R, Yang X K, Yang F, et al. Journal of Chongqing Jiaotong University Natural Science, 2015, 34(5), 44(in Chinese).
熊锐, 杨晓凯, 杨发, 等. 重庆交通大学学报自然科学版, 2015, 34(5), 44.
7 Feng X J, Zhao M L, Chen W, et al. Journal of Building Materials, 2019, 22(1), 117(in Chinese).
冯新军, 赵梦龙, 陈旺, 等. 建筑材料学报, 2019, 22(1), 117.
8 Yang X K, Xiong R, Fan T Q, et al. Materials Reports B:Research Papers, 2015, 29(6), 135(in Chinese).
杨晓凯, 熊锐, 范天奇, 等. 材料导报:研究篇, 2015, 29(6), 135.
9 Modarres A, Rahmanzadeh M. Construction and Building Materials, 2014, 66, 476.
10 Wu J R, Cui S C, Hong R B, et al. Journal of Building Materials, 2020, 23(5), 1167(in Chinese).
吴金荣, 崔善成, 洪荣宝, 等. 建筑材料学报, 2020, 23(5), 1167.
11 Zhang Y X, Lei Q, Luo R Z, et al. Journal of China & Foreign Highway, 2016, 36(3), 278(in Chinese).
张映雪, 雷强, 罗润洲, 等. 中外公路, 2016, 36(3), 278.
12 Tan Y Q, Wang D Q, Bian X, et al. Journal of Highway and Transportation Research and Development, 2012, 29(11), 6(in Chinese).
谭忆秋, 王大庆, 边鑫, 等. 公路交通科技, 2012, 29(11), 6.
13 Tan Y Q, Li X L, Zhou X Y, et al. Journal of Harbin Institute of Technology, 2009(11), 102(in Chinese).
谭忆秋, 李晓琳, 周兴业, 等. 哈尔滨工业大学学报, 2009(11), 102.
14 Tan Y Q, Li X L, Wu J T, et al. China Journal of Highway and Transport, 2012, 25(3), 65(in Chinese).
谭忆秋, 李晓琳, 吴建涛, 等. 中国公路学报, 2012, 25(3), 65.
15 Guo M. Study on interaction mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate. Ph.D. Thesis, Harbin Institute of technology, China, 2016(in Chinese).
郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究. 博士学位论文, 哈尔滨工业大学, 2016.
16 Ma X Y. Study on asphalt-filler interaction and prediction of asphalt mastic performance. Ph.D. Thesis, Chang'an University, China, 2019(in Chinese).
马晓燕. 沥青-填料交互作用效应与沥青胶浆性能预估研究. 博士学位论文, 长安大学, 2019.
17 Liu H, Luo R.Construction and Building Materials, 2017, 152, 259.
18 Xiong R, Qiao N, Chu C, et al. Journal of Jilin University Engineering and Technology Edition, 2020, 50(1), 183(in Chinese).
熊锐, 乔宁, 褚辞, 等.吉林大学学报工学版, 2020, 50(1), 183.
19 Wang Z C. Study on viscoelastic characterization and J-MRP prediction model of asphalt mixtures. Ph.D. Thesis, Chang'an University, China, 2018(in Chinese).
王志臣. 沥青混合料的黏弹性能表征及J-MRP预测模型研究. 博士学位论文, 长安大学, 2018
20 Palierne J F. Rheologica Acta, 1990, 29(3), 204.
21 Graebling D, Muller R. Colloids & Surfaces, 1991, 55, 89.
22 Ziegel K D, Romanov A. Journal of Applied Polymer Science, 2010, 17(4), 19.
23 Xing C, Liu L, Cui Y, et al. Fuel, 2020, 264, 116845.1.
24 Sun G Q, Pang Q, Sun D Q. Petroleum asphalt, 2016, 30(4), 18(in Chinese).
孙国强, 庞琦, 孙大权. 石油沥青, 2016, 30(4), 18.
[1] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[2] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[3] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[4] 胡恒武, 查旭东, 吕瑞东, 邱梦萱, 钟海阔, 李正, 潘勤学. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 21060129-12.
[5] 张吉哲, 王静, 李岩, 唐小丹, 许成虎, 王业飞, 苏纪壮, 张国扬, 何亮. 沥青胶浆-集料界面水盐侵蚀损伤规律研究[J]. 材料导报, 2022, 36(16): 22040097-9.
[6] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[7] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[8] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[9] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[10] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[11] 姚秉辰, 纪小平, 汤振农, 胡永林, 司柏通. 沥青路面界面聚合微胶囊的制备和性能[J]. 材料导报, 2022, 36(13): 21020130-6.
[12] 李文博, 柳力, 刘朝晖, 刘俊豪. 促溶-表面处理二元复合作用对橡胶沥青性能的影响[J]. 材料导报, 2022, 36(11): 21010088-7.
[13] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[14] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[15] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed