Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22040049-6    https://doi.org/10.11896/cldb.22040049
  高分子与聚合物基复合材料 |
环氧树脂/碳化硼复合材料耐辐射和热老化性能研究
张城皓1, 王硕珏2, 田琳1, 谷潇夏1, 曹可3, 张龙3, 马灿坤1, 王连才3, 马慧玲1,*, 张秀芹1
1 北京服装学院材料设计与工程学院,北京市服装材料研究开发与评价北京市重点实验室,北京市纺织纳米纤维工程技术研究中心,北京 100029
2 航天材料及工艺研究所,北京 100076
3 北京市射线应用研究中心,辐射新材料北京市重点实验室, 北京 100015
Study on Irradiation and Thermal Aging Resistance of Epoxy Resin/Boron Carbide Composites
ZHANG Chenghao1, WANG Shuojue2, TIAN Lin1, GU Xiaoxia1, CAO Ke3, ZHANG Long3, MA Cankun1, WANG Liancai3, MA Huiling1,*, ZHANG Xiuqin1
1 Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology,Beijing 100029, China
2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
3 Beijing Key Laboratory of Radiation Advanced Materials, Beijing Research Center for Radiation Application, Beijing 100015, China
下载:  全 文 ( PDF ) ( 7913KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以环氧树脂为基体,碳化硼为中子吸收填料,采用高效的固化成型方法制备了环氧树脂/碳化硼复合屏蔽材料。通过扫描电镜(SEM)、差示扫描量热法(DSC)和热失重法(TGA)分析碳化硼含量对复合材料微观结构、固化程度和热稳定性的影响;通过辐照和热老化前后样品拉伸和冲击性能的测试探究了材料的辐射稳定性和热老化性能。实验结果表明:碳化硼粉体能均匀地分散在环氧树脂基体中;经过150 ℃不同时间的热老化测试和100 kGy辐照实验,复合材料的力学性能略有降低。采用SuperMC软件模拟计算了复合材料对热中子和慢中子的屏蔽性能,当复合材料厚度为5 mm时,复合材料对热中子和慢中子的屏蔽效率分别为99%和63%,此材料有望作为一种新型的屏蔽材料应用于乏燃料贮存罐中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张城皓
王硕珏
田琳
谷潇夏
曹可
张龙
马灿坤
王连才
马慧玲
张秀芹
关键词:  环氧树脂  碳化硼  耐高温  中子屏蔽  蒙特卡罗模拟计算(MCNP)    
Abstract: Boron carbide/epoxy resin composite for neutron shielding application was prepared by a facile thermal curing method with epoxy resin as matrix and boron carbide (B4C) as neutron absorbing filler. The microstructures of the composites were characterized by scanning electron microscopy (SEM). The curing degree and thermostability of the composites were further investigated via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The effects of γ-irradiation and thermal aging on the composites were analyzed by tensile and impact tests. The results indicate that B4C was uniformly dispersed in the epoxy resin matrix. The tensile stress of the composites slightly decreased after thermal aging at 150 ℃ (1 and 3 weeks) and 100 kGy irradiation. And the neutron shielding performances of the composites were simulated by SuperMC software. When the thickness of the composite was 5 mm, radiation shielding effectiveness of the composite for thermal and slow neutrons was 99% and 63%, respectively. This composite is expected to be a new type of neutron shielding material in spent fuel storage tanks.
Key words:  epoxy resin    boron carbide    high temperature resistance    neutron shielding    Monte Carlo simulation calculation
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TL93+3  
基金资助: 北京市科技新星(Z181100006218087);北京学者(RCQJ20303)
通讯作者:  * 马慧玲,北京服装学院副教授、硕士研究生导师。2008年天津大学材料科学与工程专业本科毕业,2013年北京化工大学材料科学与工程专业博士毕业,2015年北京市科学技术研究院/北京大学联合培养博士后出站后到北京市射线应用研究中心工作,2018年到北京服装学院工作至今。目前主要从事纳米复合材料在电磁波吸收、红外隐身、智能传感等领域的应用基础研究工作。发表论文30余篇,包括ACS Applied Materials & Interfaces、Carbon等。获授权国家发明专利10项。主持国家自然科学基金青年基金项目等10余项。hlma@bift.edu.cn   
作者简介:  张城皓,2017年6月毕业于南昌航空大学,获得工学学士学位。现为北京服装学院材料设计与工程学院硕士研究生,在马慧玲副教授的指导下进行研究。目前主要从事屏蔽材料和红外隐身材料领域的研究。
引用本文:    
张城皓, 王硕珏, 田琳, 谷潇夏, 曹可, 张龙, 马灿坤, 王连才, 马慧玲, 张秀芹. 环氧树脂/碳化硼复合材料耐辐射和热老化性能研究[J]. 材料导报, 2023, 37(23): 22040049-6.
ZHANG Chenghao, WANG Shuojue, TIAN Lin, GU Xiaoxia, CAO Ke, ZHANG Long, MA Cankun, WANG Liancai, MA Huiling, ZHANG Xiuqin. Study on Irradiation and Thermal Aging Resistance of Epoxy Resin/Boron Carbide Composites. Materials Reports, 2023, 37(23): 22040049-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040049  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22040049
1 Chen F D, Tang X B, Wang P, et al. Atomic Energy Science and Technology, 2012, 46(S1), 703 (in Chinese).
陈飞达, 汤晓斌, 王鹏, 等.原子能科学技术, 2012, 46(S1), 703.
2 Steven, Chu, Arun, et al. Nature, 2012, 488(7411), 294.
3 Weng S F, Ren H, Dong D L, et al. Nuclear Power Engineering, 2018, 39(3), 4 (in Chinese).
瓮松峰, 任荷, 董岱林, 等. 核动力工程, 2018, 39(3), 4.
4 Soliman S E, Youchison D L, Baratta A J, et al. Nuclear Technology, 1991, 96(3), 346.
5 Robing C V, Cieslak M J. Metallurgical and Materials Transactions A, 1995, 26(7), 1673.
6 Yusof M R, Abdullah Y, Samsu Z. Advanced Materials Research, 2012, 535-537, 1877.
7 Guo L X, Zong D C, Lin B P, et al. Acta Polymerica Sinica, 2015(10), 1180.
8 Harrison C, Weaver S, Bertelsen C, et al. Journal of Applied Polymer Science, 2008, 109(4), 2529.
9 Hu G, Hu H, Sun W, et al. AIP Advances, 2019, 9(12), 125044.
10 Li X M, Wu J Y, Tang C Y, et al. Composites Part B: Engineering, 2019, 159, 355.
11 Fu X, Ji Z, Lin W, et al. Science and Technology of Nuclear Installations, 2021, 2021(1), 1.
12 Cai Y, Hu H, Lu S, et al. Applied Radiation & Isotopes, 2018, 135, 147.
13 Zaheer U, Tariq Y, Muhammad S, et al. Radiation Physics and Chemistry, 2020, 166, 108450.
14 Wang Y R, Zhao Y, Zhong M Z, et al. Precision Forming Engineering, 2019, 11(3), 7 (in Chinese).
王玉容, 赵勇, 蒋明忠, 等. 精密成形工程, 2019, 11(3), 7.
15 Harrison C, Burgett E, Hertel N, et al. American Institute of Physics, 2008, 969, 484.
16 Tao K, Yang S, Grunlan J C, et al. Journal of Applied Polymer Science, 2010, 102(6),5248.
17 Zhang Q R, Tang C L, Chen X Y, et al. Chemical Engineer, 2009, 23(9), 5 (in Chinese).
张启戎, 唐常良, 陈晓媛, 等.化学工程师, 2009, 23(9), 5.
18 Sukegawa A M, Anayama Y, Ohnishi S, et al. Journal of Nuclear Science and Technology, 2011, 48(4), 585.
19 Shirmardi, Seyed, Pezhman, et al. Radiation Physics and Chemistry, 2016, 127, 140.
20 Sukegawa, Anayama, Okuno, et al. Journal of Nuclear Materials, 2011, 417(1-3), 850.
21 Huang Y P, Feng H S, Liang L, et al. Journal of Tianjin University, 2011, 44(7), 639(in Chinese).
黄益平, 冯惠生, 梁璐, 等.天津大学学报, 2011, 44(7), 639.
22 Diao F Y, Zhang Y, Liu Y J, et al. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms, 2016, 383, 227.
[1] 吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
[2] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[3] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[4] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[5] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[6] 许松江, 许志彦, 侯泽明, 宝冬梅, 周国永, 邹光龙. 环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为[J]. 材料导报, 2023, 37(22): 22070044-7.
[7] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[8] 傅豪, 王朝辉, 刘鲁清, 刘伟, 余四新. 路用水性环氧改性乳化沥青组成优化及耐久性能评价[J]. 材料导报, 2023, 37(18): 22010074-9.
[9] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[10] 颜睿, 沃虓野, 王豫, 黄健, 张齐贤. 石墨烯改性导热复合材料研究进展[J]. 材料导报, 2023, 37(15): 21110075-14.
[11] 叶姣凤, 王飞, 张钧翔, 左洋, 冯利邦, 罗晓晓. 热可逆聚氨酯改性自修复环氧树脂的力学性能和自修复行为[J]. 材料导报, 2023, 37(14): 22010044-6.
[12] 黄志雄, 胡新军, 田建平, 陈满骄, 马小燕, 江雪莲, 唐诗应. 芳基磷酸酯盐改性石墨烯/水性环氧涂层的耐腐蚀性能研究[J]. 材料导报, 2023, 37(13): 21110138-7.
[13] 陈楚童, 罗永明, 徐彩虹. 硅基陶瓷前驱体用于耐高温连接材料研究进展[J]. 材料导报, 2023, 37(11): 21060160-9.
[14] 胡帅帅, 许智鹏, 雷子萱, 陈双, 刘育红, 强军锋. 脂环族环氧-丙烯酸酯混杂光固化树脂的设计及性能研究[J]. 材料导报, 2023, 37(11): 21090171-8.
[15] 宋承哲, 张冠华, 屈丰来, 冯良勇. 热塑性聚氨酯改性环氧树脂的制备与微观特性表征[J]. 材料导报, 2023, 37(10): 21060009-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed