Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23030102-10    https://doi.org/10.11896/cldb.23030102
  高分子与聚合物基复合材料 |
高性能邻苯二甲腈树脂分子结构调控研究进展
吉贝贝, 吴楠*, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽
国防科技大学空天科学学院,长沙 410073
Research Progress in Molecular Structure Regulation of High-performance Phthalonitrile Resin
JI Beibei, WU Nan*, LIU Jiao, LIAO Wei, LYU Jiajie, YIN Changping, XING Suli
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 14163KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 邻苯二甲腈树脂是以邻苯二甲腈结构封端的一类热固性树脂的统称,固化后形成的芳杂环体型网络结构赋予邻苯二甲腈树脂优异的热稳定性、耐化学腐蚀性、阻燃性、低介电常数等,其在航空航天、船舶和电子封装等领域具有广阔的应用前景。然而,苛刻的成型工艺制约着邻苯二甲腈树脂的发展和应用。因此,在邻苯二甲腈树脂的工艺改善、性能提升和功能开发上存在着诸多机遇和挑战。本文综述了近几年国内外对邻苯二甲腈树脂分子结构调控和高性能固化剂设计的相关研究报道,探讨了分子结构对邻苯二甲腈树脂加工性、耐热性和介电性能的影响,并对该材料的研究进展和发展趋势进行总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吉贝贝
吴楠
刘姣
廖维
吕家杰
尹昌平
邢素丽
关键词:  邻苯二甲腈树脂  分子结构  耐高温  高性能  固化剂    
Abstract: Phthalonitrile resin is a thermosetting resin that exhibits exceptional thermal stability, chemical corrosion resistance, flame retardancy, and low dielectric constant due to its aromatic heterocyclic network structure formed after curing. The resin holds significant potential in various industries such as aerospace, shipbuilding, and electronic packaging. Therefore, there are many opportunities and challenges in the process improvement, performance enhancements, and functional development of phthalonitrile resin. However, the rigorous molding process of phthalonitrile resin poses challenges for its development and application. This paper provides a comprehensive review of recent research reports on molecular structure regulation and the design of high-performance curing agents for phthalonitrile resin, both domestically and internationally. The influence of the molecular structure on the processability, heat resistance, and dielectric properties of phthalonitrile resin was discussed. Moreover, this review summarizes the current research progress and future development trends of phthalonitrile resin.
Key words:  phthalonitrile resin    molecular structure    high-temperature resistance    high-performance    curing agent
发布日期:  2023-09-06
ZTFLH:  TB323  
基金资助: 国防科技大学自主创新科学基金(2022-076;23-22CX-22GC-01-10)
通讯作者:  *吴楠,国防科技大学空天科学学院副教授、硕士研究生导师。2018年6月获国防科技大学材料科学与工程专业博士学位。主要从事极端服役环境树脂基复合材料、功能复合材料等方面的研究工作。获授权国家发明专利13项,发表论文30余篇,入选中国科协青年人才托举工程。lierenwn@nudt.edu.cn   
作者简介:  吉贝贝,2017年6月获河南工业大学工学学士学位。现为国防科技大学空天科学学院硕士研究生,主要研究领域为耐高温树脂基体。
引用本文:    
吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
JI Beibei, WU Nan, LIU Jiao, LIAO Wei, LYU Jiajie, YIN Changping, XING Suli. Research Progress in Molecular Structure Regulation of High-performance Phthalonitrile Resin. Materials Reports, 2023, 37(S1): 23030102-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030102  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23030102
1 Satya B, Sastri T M K. Journal of Polymer Science Part A:Polymer Che-mistry, 1998, 36(11), 1885.
2 Keller T M. Journal of Polymer Science Part A:Polymer Chemistry, 1988, 26(12), 3199.
3 Griffith T M K A. Journal of Fluorine Chemistry, 1979, 13(4), 315.
4 Dominguez D D, Keller T M. High Performance Polymers, 2006, 18(3), 283.
5 Laskoski M, Neal A, Schear M B, et al. Journal of Polymer Science Part A:Polymer Chemistry, 2015, 53(18), 2186.
6 Keller T M. US patent, US8921510, 2015.
7 Bulgakov B A, Babkin A V, Dzhevakov P B, et al. European Polymer Journal, 2016, 84, 205.
8 Babkin A V, Zodbinov E B, Bulgakov B A, et al. Polymer Science Series B, 2016, 58(3), 298.
9 Babkin A V, Zodbinov E B, Bulgakov B A, et al. European Polymer Journal, 2015, 66, 452.
10 Dzhevakov P B, Korotkov R F, Bulgakov B A, et al. Mendeleev Communications, 2016, 26(6), 527.
11 Terekhov V E, Bogolyubov A A, Morozov O S, et al. Mendeleev Communications, 2020, 30(6), 796.
12 Belsky K S, Sulimov A V, Bulgakov B A, et al. Data in Brief, 2017, 13, 10.
13 Bulgakov B A, Sulimov A V, Babkin A V, et al. Mendeleev Communications, 2017, 27(3), 257.
14 Yakovlev M V, Morozov O S, Afanaseva E S, et al. Reactive and Functional Polymers, 2020, 146, 104409.
15 Han Y, Tang D H, Wang G X, et al. European Polymer Journal, 2019, 111, 104.
16 Sheng H T, Peng X G, Guo H, et al. Thermochimica Acta, 2014, 577, 17.
17 Zhao F H. Preparation and properties of polyphthalonitrile resin and its composites. Master's Thesis, Hebei University of Technology, China, 2015 (in Chinese).
赵凤华. 聚苯腈树脂及其复合材料的制备与性能研究. 硕士学位论文, 河北工业大学, 2015.
18 Wang J, Chen C, Chen X G, et al. High Performance Polymers, 2018, 30(9), 1114.
19 Tang L, Zhang J L, Tang Y S, et al. Journal of Materials Science & Technology, 2021, 75, 225.
20 Xie G Y, Ma C P, Quan D P, et al. Insulating Material, 2021, 54(9), 15 (in Chinese).
谢高艺, 马春平, 全大萍, 等. 绝缘材料, 2021, 54(9), 15.
21 Laskoski M, Schear M B, Neal A, et al. Polymer, 2015, 67, 185.
22 Zong L S, Liu C, Zhang S H, et al. RSC Advances, 2013, 5(94), 77027.
23 Zong L S, Liu C, Zhang S H, et al. Polymer, 2015, 77, 177.
24 Zong L S, Liu C, Liu R, et al. Polymer Bulletin, 2014, 71(10), 2641.
25 Zong L S. Synthesis and properties of heat-resistant resins bearing phenyl-s-triazine moieties in backbones. Ph. D. Thesis, Dalian University of Technology, China, 2015 (in Chinese).
宗立率. 主链含三芳基均三嗪结构耐高温树脂的合成与性能. 博士学位论文, 大连理工大学, 2015.
26 Wu Z Q, Li N, Han J H, et al. Journal of Applied Polymer Science, 2018, 135(13), 45976.
27 Wang G, Han Y, Guo Y, et al. Industrial & Engineering Chemistry Research, 2019, 58(23), 9921.
28 Zu Y, Zong L S, Wang J Y, et al. Polymer, 2019, 172, 372.
29 Zu Y, Zhang F F, Chen D D, et al. Polymer, 2020, 198, 122490.
30 Zu Y, Zong L S, Wang J Y, et al. Polymer Testing, 2021, 96, 107062.
31 Wang T, Wang Z L, Dayo A Q, et al. Journal of Applied Polymer Science, 2022, 139(21), 52193.
32 Ren D X, Xu M Z, Chen S J, et al. European Polymer Journal, 2021, 159, 110715.
33 Yang J, Yang X L, Zhan Y Q, et al. Journal of Applied Polymer Science, 2013, 127(3), 1676.
34 Li J, Wu M J, Rong J X, et al. Chemistry Select, 2022, 7(4), e20210446.
35 Wu M J, Xu J, Bai S, et al. Soft Matter, 2020, 16(7), 1888.
36 Laskoski M, Carke J S, Neal A, et al. Chemistry Select, 2016, 1(13), 3423.
37 Chen M H, He X, Guo Y H, et al. Polymer Chemistry, 2021, 12(3), 408.
38 Peng W F, Yao F, Hu J H, et al. Royal Society of Chemistry, 2018, 20(22), 5158.
39 He X, Qi J Y, Chen M H, et al. Polymer, 2022, 253, 124973.
40 Han Y, Tang D H, Wang G X, et al. Chinese Journal of Polymer Science, 2020, 38(1), 72.
41 Wang A R, Dayo A Q, Zu L W, et al. Reactive and Functional Polymers, 2018, 127, 1.
42 Yang X L, Zhang J D, Lei Y J, et al. Journal of Applied Polymer Science, 2011, 121(4), 2331.
43 Hu Y. Design of high efficiency curing system of phthalonitrile resin and performance study. Master's Thesis, Dalian University of Technology, China, 2019 (in Chinese).
胡月. PN树脂高效固化体系设计及性能研究. 硕士学位论文, 大连理工大学, 2019.
44 Wu Z Q, Han J H, Li N, et al. Polymer International, 2017, 66(6), 876.
45 Weng Z L, Hu Y, Qi Y, et al. Polymers for Advanced Technologies, 2019, 31(2), 233.
46 Weng Z H, Fu J Y, Zong L S, et al. RSC Advances, 2015, 5(112), 92055.
47 Qi Y, Weng Z H, Song C, et al. High Performance Polymers, 2021, 33(5), 538.
48 Weng Z H, Qi Y, Zong L S, et al. Chinese Chemical Letters, 2017, 28(5), 1069.
49 Zeng K. Studies on self-promoted curing phthalonitrile. Master's Thesis, Sichuan University, China, 2006 (in Chinese).
曾科. 自催化交联酞菁树脂的研究. 硕士学位论文, 四川大学, 2006.
50 Zeng K, Zhou K, Zhou S H, et al. European Polymer Journal, 2009, 45(4), 1328.
51 Li Z, Guo Y, Wang G X, et al. Wiley Polymers Advanced Technologies, 2018, 29(12), 2936.
52 Zeng K, Li L, Xiang S R, et al. Polymer Bulletin, 2012, 68(7), 1879.
53 Zeng K, Zhou K, Tang W R, et al. Chinese Chemical Letters, 2007, 18(5), 523.
54 Zhang Z B, Li Z, Zhou H, et al. Journal of Applied Polymer Science, 2014, 131(20), 40919.
55 Guo X Y, Liang B, Chen M H, et al. Polymer Degradation and Stability, 2021, 188, 109569.
56 Hu J H, Liu Y C, Jiao Y, et al. RSC Advances, 2015, 5(21), 16199.
57 Wu D M, Zhao Y C, Zeng K, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(23), 4977.
58 Yang W J, Qi J Y, Tan W, et al. Polymer, 2022, 255, 125118.
59 Luo T F, Li H, Huang M Y, et al. China Plastics Industry, 2019, 47(4), 15(in Chinese).
罗廷福, 李罕, 黄梦瑶, 等. 塑料工业, 2019, 47(4), 15.
60 Chen L, Ren D X, Chen S J, et al. Polymer Testing, 2019, 74, 127.
61 Xu M Z, Jia K, Liu X B. High Performance Polymers, 2016, 28(10), 1161.
62 Ren D X, Li B, Chen S J, et al. Journal of Applied Polymer Science, 2021, 138(5), 49777.
63 Wang T, Dayo A Q, Wang Z L, et al. New Journal of Chemistry, 2022, 46(9), 4072.
[1] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[2] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[3] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[4] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[5] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[6] 陈楚童, 罗永明, 徐彩虹. 硅基陶瓷前驱体用于耐高温连接材料研究进展[J]. 材料导报, 2023, 37(11): 21060160-9.
[7] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[8] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[9] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[10] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[11] 张勇, 高相东, 姚佳祺, 吴永庆, 赵祥. SiO2-Al2O3气凝胶及纤维增强复合材料制备技术研究进展[J]. 材料导报, 2022, 36(23): 21030207-9.
[12] 赵立伟, 杨海冬, 王德志, 曲春艳, 冯浩, 李洪峰, 肖万宝. 双马来酰亚胺树脂增韧改性研究进展[J]. 材料导报, 2022, 36(20): 21020082-7.
[13] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[14] 钟玉健, 张晓超, 袁锐, 吴学敏, 陈林万. 非钙基土壤固化剂加固机理及其应用性能研究进展[J]. 材料导报, 2022, 36(14): 20110066-9.
[15] 龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed