Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21020082-7    https://doi.org/10.11896/cldb.21020082
  高分子与聚合物基复合材料 |
双马来酰亚胺树脂增韧改性研究进展
赵立伟, 杨海冬, 王德志*, 曲春艳, 冯浩, 李洪峰, 肖万宝
黑龙江省科学院石油化学研究院,哈尔滨 150040
Research Progress in Toughness Modification of Bismaleimide Resin
ZHAO Liwei, YANG Haidong, WANG Dezhi*, QU Chunyan, FENG Hao, LI Hongfeng, XIAO Wanbao
Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin 150040, China
下载:  全 文 ( PDF ) ( 2304KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双马来酰亚胺(BMI)树脂以其优异的耐高温性能而被广泛应用于航空航天等领域,尤其是BMI树脂基复合材料和BMI结构胶黏剂制造领域。未经增韧改性的BMI树脂存在熔点高、溶解性差、固化物脆性大等缺点,特别是脆性大这一缺点严重限制了BMI树脂的应用,因此在使用之前需要对BMI进行增韧改性。本文从内增韧改性、外增韧改性以及协同增韧改性三个主要方面综述了BMI树脂增韧改性的研究进展。其中,内增韧改性方法包括采用扩链剂对BMI进行扩链增韧改性、在BMI分子结构中引入柔性基团进行分子内增韧改性以及采用烯丙基化合物和丙烯基化合物对BMI进行共聚合增韧改性等;外增韧改性方法主要是通过在BMI树脂中引入增韧剂来达到增韧效果,增韧剂包括橡胶弹性体、无机功能材料、热塑性树脂及热固性树脂等;协同增韧改性是利用多种增韧方法产生的协同效应来达到BMI强增韧目的。本文最后对BMI树脂增韧改性研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵立伟
杨海冬
王德志
曲春艳
冯浩
李洪峰
肖万宝
关键词:  双马来酰亚胺  增韧改性  耐高温  复合材料    
Abstract: Bismaleimide (BMI) resin is widely used in the aerospace field owing to its excellent high-temperature resistance, especially in the BMI resin-based composite materials and BMI structural adhesive manufacturing fields. However, BMI resins without toughening modification have shortcomings of high melting point, poor solubility and high brittleness in cured products. For example, high brittleness severely limits the BMI resin application. Therefore, it is necessary to toughen and modify BMI before use. This paper reviews the research progress of toughening modification of BMI resin from three main aspects: internal toughening, external toughening and synergistic toughening modifications. The internal toughening modification methods include using chain extenders for chain extension and toughening modification of BMI, introducing flexible groups into BMI molecular structure for intramolecular toughening modification, and using allyl and propenyl compounds for BMI toughening modification through copolymerization. The external toughening modification method mainly achieves the toughening effect by introducing a toughening agent into the BMI resin. The external toughening agent includes rubber elastomers, inorganic functional materials, thermoplastic resins and thermosetting resins. The synergistic toughening modification utilizes the synergistic effect of various toughening methods to strengthen and toughen BMI. The paper ends with a brief discussion about the future research trends of this field.
Key words:  bismaleimide    toughening modification    high-temperature resistance    composites
发布日期:  2022-10-26
ZTFLH:  TB332  
基金资助: 黑龙江省杰出青年科学基金(JC2017015);黑龙江省自然科学基金(TD2020E003);国家自然科学基金(21875054);黑龙江省科学院预研基金(YY2021SH01)
通讯作者:  *jim603@163.com   
作者简介:  赵立伟,工学博士,黑龙江省科学院石油化学研究院助理研究员,2019年7月博士毕业于哈尔滨工业大学,2019年9月进入哈尔滨工程大学/黑龙江省科学院石油化学研究院联合博士后工作站开展博士后研究工作,主要从事功能高分子材料、高性能结构胶黏剂以及复合材料粘接理论研究。主持黑龙江省博士后面上基金、中国博士后科学基金及国防基础科研项目等,已发表SCI收录学术论文13篇,授权中国发明专利3项。
王德志,工学博士,黑龙江省科学院石油化学研究院研究员,硕士研究生导师,享受国务院特殊津贴专家,黑龙江省杰出青年科学基金获得者,黑龙江省级领军人才梯队后备带头人,北京粘接学会理事。1997年7月毕业于黑龙江大学化学化工学院,获学士学位,同年到黑龙江省科学院石油化学研究院参加工作至今;其间于2013年12月毕业于哈尔滨理工大学材料科学与工程学院,获硕士学位,2018年6月毕业于哈尔滨理工大学材料科学与工程学院,获工学博士学位。现任黑龙江省科学院石油化学研究院结构与耐热材料研究中心主任,主要从事高温结构胶黏剂、橡胶金属胶黏剂和复合材料预浸料研究。主持和参加国家级、省部级科研项目20余项,发表学术论文60余篇,其中SCI、EI收录论文22篇;获得中国发明专利22项;科研成果广泛应用于航空航天、轨道交通和大型舰船等高技术领域。
引用本文:    
赵立伟, 杨海冬, 王德志, 曲春艳, 冯浩, 李洪峰, 肖万宝. 双马来酰亚胺树脂增韧改性研究进展[J]. 材料导报, 2022, 36(20): 21020082-7.
ZHAO Liwei, YANG Haidong, WANG Dezhi, QU Chunyan, FENG Hao, LI Hongfeng, XIAO Wanbao. Research Progress in Toughness Modification of Bismaleimide Resin. Materials Reports, 2022, 36(20): 21020082-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020082  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21020082
1 Ma X Q, Su Z T. Journal of Materials Engineering,2020, 48 (10), 39(in Chinese).
马绪强, 苏正涛. 材料工程, 2020, 48 (10),39.
2 Chen Y F, Geng C B, Guo H Y, et al. Journal of Materials Enginee-ring, 2019, 47(8), 103(in Chinese).
陈宇飞, 耿成宝, 郭红缘, 等. 材料工程, 2019, 47(8), 103.
3 Marks M J, Verghese N E, O’Connell C L, et al. Journal of Polymer Science Part B: Polymer Physics, 2009, 47(1), 72.
4 Li H F, Qu C Y, Wang D Z, et al. Materials Reports B:Research Papers, 2018, 32(3), 971(in Chinese).
李洪峰, 曲春艳, 王德志, 等. 材料导报:研究篇,2018,32(3),971.
5 Gu A J. Polymer for Advanced Technologies, 2005, 16(7), 563.
6 Yerlíkaya Z, Öktem Z, Bayramli E. Journal of Applied Polymer Science, 1996, 59, 165.
7 Wang R M, Zheng S R, Su K H. Acta Materiae Compositae Sinica, 1997, 14(3), 61(in Chinese).
王汝敏, 郑水蓉, 苏克和. 复合材料学报, 1997, 14(3), 61.
8 Xu Y. Research on modified resin systems containing oxadiazole diamine and bismaleimides. Master’s Thesis, Dalian University of Technoloy,China, 2015(in Chinese).
徐懿. 含噁二唑二元胺/双马来酰亚胺改性树脂体系的研究.硕士学位论文, 大连理工大学, 2015.
9 Qu C, Zhao L, Wang D, et al. Journal of Applied Polymer Science, 2014, 131, 40395.
10 Rao B S. Journal of Polymer Science, Part C: Polymer Letters, 1988, 26, 3.
11 Gu Y J, Liang G Z, Sheng L W, et al. Polymeric Materials Science and Engineering, 1997, 13(4), 44(in Chinese).
顾媛娟, 梁国正, 盛立文, 等. 高分子材料科学与工程,1997,13(4),44.
12 Ma X, Yan H, Ning R. Journal of Applied Polymer Science, 2001, 80(13), 2518.
13 Iredale R J, Ward C, Hamerton I. Progress in Polymer Science, 2017, 69, 1.
14 Liu Y Y, Xu A R, Ning R C. Journal of Aeronautical Materials, 1999, 19(4), 44(in Chinese).
刘元镛, 许爱荣, 宁荣昌. 航空材料学报, 1999, 19(4), 44.
15 Karl F J. Reactive Polymers Fundamentals and Applications, 2013(11), 269.
16 Hu X, Fan J, Yue C Y, et al. Journal of Materials Processing Technology, 1999, 89-90, 544.
17 Tang H, Li W, Fan X, et al. Polymer, 2009, 50(6), 1414.
18 Wang D Z, Liu P, Qu C Y, et al. Polymers Advanced Technologies, 2016, 27, 185.
19 Qu C, Chang J, Liu C, et al. High Performance Polymers, 2020, 32(1), 116.
20 Liu P, Qu C Y, Wang D Z, et al. High Performance Polymers, 2017, 29(3), 298.
21 Wang D Z, Wang X, Liu L Z, et al. Acta Materiae Compositae Sinica, 2017(5), 1088(in Chinese).
王德志, 王鑫, 刘立柱, 等. 复合材料学报, 2017(5), 1088.
22 Zhou H R, Jing J Q, Wang D Z, et al. Acta Materiae Compositae Sinica, 2020, 37(6), 58(in Chinese).
周浩然, 荆佳奇, 王德志, 等. 复合材料学报, 2020, 37(6), 58.
23 Recker H, Tesch H, Weber T, et al. US patent, US005532296A, 1996.
24 Wang D, Wang X, Liu L, et al. High Performance Polymers, 2016, 29(10), 1199.
25 Yang H D, Qu C Y, Wang D Z, et al. Chemistry and Adhesion, 2014, 36(1), 20(in Chinese).
杨海冬, 曲春艳, 王德志, 等. 化学与黏合, 2014, 36(1), 20.
26 Chen Y, Liu Z Y, Guan H Y, et al. Materials Reports, 2021, 35(13), 13205(in Chinese).
陈阳, 刘志勇, 管焓宇, 等. 材料导报, 2021, 35(13), 13205.
27 Jin J, Ciu J, Tang X, et al. Macromolecular Chemistry and Physics, 1999, 1960, 1956.
28 Zhang B Y, Li P, Chen X B. Journal of Materials Science,1998,3,5683.
29 Liu X, Yu Y, Li S V. European Polymer Journal, 2006, 42, 835.
30 Buyny R A. US patent, US7592072B2, 2007.
31 Bonneau M R, Boyd J D, Emmerson G T,et al.US patent,US8080313B2,2011.
32 Wilkinson S P, Ward T C, Mcgrath J E. Polymer, 1993, 34, 870.
33 Gopala A, Wu H, Harris F, et al. Journal of Applied Polymer Science, 1997, 69, 469.
34 Gopala A, Wu H, Heiden P. Journal of Applied Polymer Science, 1998, 70, 943.
35 Shangguan J H, Liao G X, Liu C, et al. Polymeric Materials Science and Engineering, 2012, 28(1), 89(in Chinese).
上官久桓, 廖功雄, 刘程, 等. 高分子材料科学与工程, 2012, 28(1), 89.
36 Chen K L, Zhang T, Cui Y, et al. Journal of Materials Engineering, 2019, 47(7), 11(in Chinese).
陈珂龙, 张桐, 崔溢, 等. 材料工程, 2019, 47(7), 11.
37 Gopala A, Wu H, Xu J, et al. Journal of Applied Polymer Science, 1999, 71, 1809.
38 Qin H, Mather P T, Beak J B, et al. Polymer, 2006, 47, 2813.
39 Jiang Z, Yuan L, Liang G, et al. Polymer Degradation and Stability, 2015, 121, 30.
40 Wei G, Sue H J. Journal of Applied Polymer Science, 1999, 74, 2539.
41 Ellis B. Chemistry and technology of epoxy resins, Springer Science+Business Media Press,Netherlands, 1993,pp.3.
42 Li Z C, Chen Y F, Jia X C. Insulating Materials, 2017, 50(1), 28(in Chinese).
李志超, 陈宇飞, 贾锡琛. 绝缘材料, 2017, 50(1), 28.
43 Chattha M S, Dichie R A, Carduner K R. Industrial & Engineering Chemistry Research, 1989, 28(9), 1438.
44 Musto P, Martuscelli E, Ragosta G, et al. Journal of Applied Polymer Science, 1997, 69, 1029.
45 Qiao H T, Bao J W, Zhong X Y, et al. Journal of Aeronautical Mate-rials, 2019(6), 63(in Chinese).
乔海涛, 包建文, 钟翔宇,等. 航空材料学报, 2019(6), 63.
46 Gu A. Composites Science & Technology, 2006, 66(11-12), 1749.
47 Crawford A O, Cavalli G, Howlin B J, et al. Reactive Functional Polymer, 2016, 102, 110.
48 Fan J, Hu X, Yue C Y. Journal of Applied Polymer Science, 2003, 88(8), 2000.
49 Lin R H, Lu W H, Lin C W. Polymer, 2004, 45, 4423.
50 Lin R H, Lee A C, Lu W H, et al. Journal of Applied Polymer Science, 2004, 94, 345.
51 Wang Y, Kou K, Zhuo L, et al. Journal Polymer Research, 2015, 22, 51.
52 Zhang L, Liang G Z, Yang L R, et al. Engineering Plastics Application, 2007(2), 4(in Chinese).
张麟, 梁国正, 杨莉蓉, 等. 工程塑料应用, 2007(2), 4.
53 Cheng Q, Bao J, Park J. Advanced Functional Materials, 2009, 19(20), 3219.
54 Han Y, Zhou H, Ge K, et al. High Performance Polymers, 2014, 26, 874.
55 Chen Z M, Lin Q L, Cai Q H, et al. Polymeric Materials Science and Engineering, 2012, 28(11), 169(in Chinese).
陈智明, 林起浪, 蔡秋红, 等. 高分子材料科学与工程, 2012, 28(11), 169.
56 Li W, Xue F, Li Q. Plastics, Rubber and Composites,2018,47(5),187.
57 Fang F, Yan H X, Li Q, et al. Journal of Materials Science & Enginee-ring, 2007, 25 (5), 731(in Chinese).
方芬, 颜红侠, 李倩, 等. 材料科学与工程学报,2007,25(5),731.
58 Chen Y F, Wu Y Z, Dai G Q, et al. Acta Materiae Compositae Sinica, 2020, 37(5), 1015(in Chinese).
陈宇飞, 武耘仲, 代国庆, 等. 复合材料学报, 2020, 37(5), 1015.
59 Meng J, Hu X. Polymer, 2004, 45, 9011.
60 Wu G, Cheng Y, Wang K, et al. Journal of Materials Science-Materials in Electronics, 2016, 27, 5592.
61 Chen L X, Wang R M, Lan L W.In:12th National Conference on Composite Materials. Tianjin, 2002, pp.253(in Chinese).
陈立新, 王汝敏, 蓝立文.第十二届全国复合材料学术会议. 天津, 2002, pp.253.
62 Fache B, Meouche W, Trung Q, et al. International Journal of Adhesion and Adhesives, 2013, 42, 51.
63 Wu G, Kou K, Chao M, et al. Thermochimca Acta, 2012, 537, 44.
64 Li Y, Li S, Tang H. Journal of Applied Polymer Science, 2008, 108(4), 2321.
65 Wang K, Wang Y, Chen P, et al. Advances in Polymer Technology, 2018, 37, 21667.
66 Chen Y F, Dai G Q, Tian Q Y, et al. Acta Materiae Compositae Sinica, 2020, 37(6), 40(in Chinese).
陈宇飞, 代国庆, 田麒源, 等. 复合材料学报, 2020, 37(6), 40.
67 Chen Z, Yan H, Liu T, et al. Composites Science and Technology, 2016, 125, 47.
68 Chen Z, Li L, Yao H, et al. Polymer Testing, 2018, 68, 77.
69 Chen Z, Yan H, Guo L, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 18.
70 Chen Z, Guo L, Yan H, et al. Journal of Alloys and Compounds, 2020, 823, 153837.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[7] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[8] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[9] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[10] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[13] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[14] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[15] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed