Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23030085-5    https://doi.org/10.11896/cldb.23030085
  无机非金属及其复合材料 |
预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究
刘发付1,2,*, 高闯1,2, 牟晓明1,2, 张丛1,2, 郭在在1,2, 郭建斌1,2, 曹剑武1,2, 林广庆1,2
1 中国兵器科学研究院宁波分院,浙江 宁波 315103
2 内蒙金属材料研究所,内蒙古 包头 014000
Study on the Influence of Presintering Heating Rate and HIP Holding Time on the Transmittance of AlON Transparent Ceramic
LIU Fafu1,2,*, GAO Chuang1,2, MU Xiaoming1,2, ZHANG Cong1,2, GUO Zaizai1,2, GUO Jianbin1,2, CAO Jianwu1,2, LIN Guangqing1,2
1 Ningbo Branch of China Ordnance Research Institute, Ningbo 315103, Zhejiang China
2 Inner Mongolia Metal Material Research Institute, Baotou 014000, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 9207KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮氧化铝(AlON)透明陶瓷因具有高光学透过率、高力学性能、高化学稳定性等优异性能,被广泛应用于透明装甲、多模可见光-红外导引头罩、激光窗口等领域。AlON透明陶瓷的透光率与其烧结工艺密切相关,基于此,本工作研究了预烧结升温速率和热等静压(HIP)保温时间对AlON透明陶瓷可见光透过率的影响,分析了AlON在1 300~1 940 ℃烧结温度范围内的物相变化和晶粒微观形貌变化,以及陶瓷热等静压后的微观形貌变化。结果表明,在1 400~1 700 ℃范围内,提高升温速率有助于降低AlON物相分解的程度,且有利于提高其光学透过率;热等静压后处理时间的延长有助于排出AlON透明陶瓷内部的残余气孔,进一步提升其透光率;以10 ℃/min的升温速率在1 940 ℃无压预烧结8 h的AlON透明陶瓷可高度致密化,然后通过1 900 ℃和190 MPa热等静压后处理2.5 h,其光学透过率可提高至80%以上。因此,提高预烧结升温速率(3~10 ℃/min)和延长热等静压保温时间降低了AlON陶瓷分解物和气孔对光线的散射程度,可提高其可见光透过率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘发付
高闯
牟晓明
张丛
郭在在
郭建斌
曹剑武
林广庆
关键词:  AlON透明陶瓷  透光率  物相变化  微观形貌变化  物相分解    
Abstract: Alumina nitride (AlON) transparent ceramics are widely used in transparent armor, multimode visible-infrared guidance hoods, and laser windows due to their excellent properties such as high optical transmittance, high mechanical properties, and high chemical stability. The light transmittance of AlON transparent ceramics is closely related to their sintering process. Based on this, this work investigated the effects of pre sintering heating rate and hot isostatic pressing (HIP) holding time on the visible light transmittance of AlON transparent ceramics, and analyzed the phase changes and crystal morphology changes of AlON within the sintering temperature range of 1 300 ℃ to 1 940 ℃, as well as the micro morphology changes of ceramics after HIP. The results show that in the range of 1 400 ℃ to 1 700 ℃, increasing the heating rate helps to reduce the degree of phase decomposition of AlON and improve its optical transmittance. The prolongation of hot isostatic pressing (HIP) post treatment time is helpful to remove residual pores from the interior of AlON transparent ceramics, further improving their light transmittance. AlON transpa-rent ceramics can be highly densified after presintering at 1 940 ℃ for 8 hours without pressure at a heating rate of 10 ℃/min, and then subjected to hot isostatic pressing at 1 900 ℃ and 190 MPa for 2.5 hours. Its optical transmittance can be increased to over 80%. Therefore, increasing the pre sintering heating rate and prolonging the hot isostatic pressing holding time reduces the light scattering degree of AlON ceramic decomposition products and pores, which can improve its visible light transmittance.
Key words:  AlON transparent ceramic    optical transmittance    phase changes    microscopic changes    phase decompose
发布日期:  2023-09-06
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2022YFB3705900);山东省泰山学者项目
通讯作者:  *刘发付,内蒙金属材料研究所副研究员。2012年南京工业大学材料物理专业本科毕业,2017年山东大学晶体材料国家重点实验室材料学专业博士毕业后到内蒙金属材料研究所和中国兵器科学研究院宁波分院工作至今。目前主要从事透明陶瓷材料及其应用等方面的研究工作。发表论文20余篇,授权/受理专利20余件。fafuliuwyy@163.com   
引用本文:    
刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
LIU Fafu, GAO Chuang, MU Xiaoming, ZHANG Cong, GUO Zaizai, GUO Jianbin, CAO Jianwu, LIN Guangqing. Study on the Influence of Presintering Heating Rate and HIP Holding Time on the Transmittance of AlON Transparent Ceramic. Materials Reports, 2023, 37(S1): 23030085-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030085  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23030085
1 Goldman L M, Hartnett T, MWahl J M, et al. Proceedings of SPIE-The International Society for Optical Engineering, 2001, DOI:10. 1117/12. 439195.
2 Wei G C. Journal of Physics D- Applied Physics, 2005, 38 (17), 3057.
3 Krell A. Journal of the American Ceramic Society, 2003, 86(4), 546.
4 Yamaguchi G, Yanagida H. Bulletin of the Chemical Society of Japan, 1959, 32(11), 1264.
5 Goursat P, Goeuriot P, Billy M. Materials Chemistry . 1976, 1(2), 131.
6 Corbin N D. Journal of the European Ceramic Society, 1989, 5(3), 143.
7 Gentilman R, Maguire E, Kohane T, et al. Proc. SPIE, 1989, 1112, 31.
8 Goldman L MBalasubramanian SKashalikar Uet al. Proceedings of SPIE-The International Society for Optical Engineering, 2013, 8708, 4.
9 Miller L, Kaplan W D. The American Ceramic Society, 2008, 91 (5), 1693.
10 Chen F, Zhang F, Wang J, et al. Journal of Alloys and Compounds, 2015, 650, 753.
11 Chen F, Zhang F, Wang J, et al. Scripta Materialia, 2014, 81, 20.
12 Zheng K, Wang H, Xu P, et al. Journal of the European Ceramic Society, 2021, 41(7), 4319.
Tian T, Sun F, Huang C, et al. Special Ceramics Branch of the Chinese Silicate Society, Summary of the 17th National High tech Ceramics Academic Annual Conference, 2012, pp.101
13 田庭燕, 孙峰, 黄存新, 等. 中国硅酸盐学会特种陶瓷分会. 第十七届全国高技术陶瓷学术年会摘要集. 2012, pp. 101.
14 Du W, Lu K, He B, et al. Journal of the European Ceramic Society, 2023, 43(8), 3538.
15 Su M, Zhou Y, Wang K, et al. Journal of the European Ceramic Society, 2015, 35(4), 1173.
16 Yang J, Cong Y, Ling J, et al. Journal of the European Ceramic Society, 2022, 42(3), 935.
17 Shan Y, Wei X, Sun X, et al. Journal of the American Ceramic Society, 2019, 102(2), 662.
[1] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[2] 赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
[3] 赖海文, 韩会丽, 黄伟宏, 董娴, 李冰之, 沈辉, 梁宗存. 户外运行17年单晶硅光伏组件性能失效研究[J]. 材料导报, 2019, 33(2): 215-219.
[4] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed