Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22040072-7    https://doi.org/10.11896/cldb.22040072
  无机非金属及其复合材料 |
盐湖镁渣的热处理工艺及其对磷酸镁水泥性能的影响
董金美1,2, 文静1,2, 郑卫新1,2,*, 贾利蕊3, 常成功1,2, 肖学英1,2
1 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效重点实验室,西宁 810008
2 青海省盐湖资源化学重点实验室,西宁 810008
3 青海省农产品质量安全检测中心,西宁 810000
Heat Treatment Technology of Salt Lake Magnesium Slag and Its Influence on the Properties of Magnesium Phosphate Cement
DONG Jinmei1,2, WEN Jing1,2, ZHENG Weixin1,2,*, JIA Lirui3, CHANG Chenggong1,2, XIAO Xueying1,2
1 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xining 810008, China
2 Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
3 Qinghai Agricultural Product Quality and Safety Inspection Center, Xining 810000, China
下载:  全 文 ( PDF ) ( 11299KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 盐湖镁渣是盐湖卤水提取碳酸锂过程中产生的废渣,盐湖提锂产业的不断发展导致大量镁渣的产生和堆积,如何有效利用盐湖镁渣成为盐湖地区生态保障、高效生产的必要条件。本研究以盐湖镁渣为原料对其进行热处理和物理性能分析,并将热处理后的盐湖镁渣与KH2PO4反应制备盐湖磷酸镁水泥(SLMPC),研究盐湖镁渣的热处理工艺对SLMPC凝结时间、抗压强度、水化产物和微观形貌的影响。结果表明:热处理工艺对盐湖镁渣原料和SLPMC的物化性能影响显著,随热处理温度的升高和保温时间的延长,盐湖镁渣的主要物相Mg(OH)2逐渐转化为MgO,其晶粒尺寸和堆积密度增大,比表面积和水化反应活性降低;SLMPC浆体的凝结时间从几分钟延长到33 min,各龄期的抗压强度呈现先升高后降低的趋势,主要水化产物为MgKPO4·6H2O;确定最佳的热处理温度范围为1 000~1 100 ℃,保温时间为3~6 h。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董金美
文静
郑卫新
贾利蕊
常成功
肖学英
关键词:  盐湖镁渣  热处理工艺  盐湖磷酸镁水泥  物化性能    
Abstract: Salt lake magnesium slag is the waste residue produced in the process of extracting lithium extraction from salt lake brine. Due to the continuous development of lithium extraction industry, a large number of magnesium residues were produced and accumulated. How to effectively utilize these magnesium slags will become the necessary condition for ecological protection and efficient production in salt lake area. Salt lake magnesium slag was used as raw material for heat treatment and physical property analysis in this study, the salt lake magnesium slag after heat treatment was reacted with KH2PO4 to prepare salt lake magnesium phosphate cement (SLMPC). The effects of heat treatment process of salt lake magnesium slag on the setting time, compressive strength, hydration products and micro morphology of SLMPC were studied. The results show that the heat treatment process has a significant impact on the physicochemical properties of salt lake magnesium slag raw materials and SLMPC. With the increase of heat treatment temperature and holding time, the main phase Mg(OH)2 of salt lake magnesium slag is gradually transformed into MgO, and its grain size and bulk density increase, specific surface area and hydration reaction activity decrease. The setting time of SLMPC slurry is extended from a few minutes to 33 minutes. The compressive strength of each age increased first and then decrease. The main hydration product was MgKPO4·6H2O. The optimum heat treatment temperature range from 1 000 to 1 100 ℃ and the holding time was 3 to 6 hours.
Key words:  salt lake magnesium slag    heat treatment process    salt lake magnesium phosphate cement    physicochemical property
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU528.01  
基金资助: 青海省自然科学基金应用基础研究(2020-ZJ-746);中国科学院西部青年学者项目(2022000018)
通讯作者:  * 郑卫新,中国科学院青海盐湖研究所副研究员、硕士研究生导师、青海省千人计划。2010年长春理工大学材料学专业硕士毕业后到中国科学院青海盐湖研究所工作至今,2019年中国科学院青海盐湖研究所无机化学专业博士毕业。目前主要从事镁质胶凝材料研究与应用开发方面的工作。发表论文40余篇,包括Ceram. Int.、Construct. Build. Mater.、J. Build. Eng.、Adv. Cem. Res.等,授权专利10余项。zhengweixin@isl.ac.cn   
作者简介:  董金美,2005年7月、2008年7月、2015年6月分别于济南大学、山东轻工业学院(现改为齐鲁工业大学)和中国科学院青海盐湖研究所获得工学学士学位、硕士学位和理学博士学位。2008年7月进入中国科学院青海盐湖研究所从事盐湖镁资源的综合利用与镁质胶凝材料的应用基础研究工作。
引用本文:    
董金美, 文静, 郑卫新, 贾利蕊, 常成功, 肖学英. 盐湖镁渣的热处理工艺及其对磷酸镁水泥性能的影响[J]. 材料导报, 2023, 37(23): 22040072-7.
DONG Jinmei, WEN Jing, ZHENG Weixin, JIA Lirui, CHANG Chenggong, XIAO Xueying. Heat Treatment Technology of Salt Lake Magnesium Slag and Its Influence on the Properties of Magnesium Phosphate Cement. Materials Reports, 2023, 37(23): 22040072-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040072  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22040072
1 Jiang C X, Chen B L, Zhang D Y, et al. Journal of Chemical Enginee-ring, 2022, 73 (2), 481 (in Chinese).
蒋晨啸, 陈秉伦, 张东钰, 等.化工学报, 2022, 73 (2), 481.
2 Tan Y S, Yu H F, Li Y, et al.Ceramics International, 2014, 40 (8), 13543.
3 Tan Y S, Yu H F, Li Y, et al. Journal of the Chinese Ceramic Society, 2014, 42 (11), 1362 (in Chinese).
谭永山,余红发,李颖, 等.硅酸盐学报, 2014, 42 (11), 1362.
4 Dong J M, Yu H F, Xiao X Y, et al. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31 (3), 671.
5 Roy D M.Science, 1987, 235, 651
6 Prosen E M.US Patent, US2152152, 1939.
7 Seehra S S, Gupta S, Kumar S. Cement and Concrete Research, 1993, 23 (2), 254.
8 Feng L, Chen X Q, Wen X D, et al. Construction and Building Mate-rials, 2019, 204, 550.
9 Lei F, Zhang Z Y, Wen X D.Advanced Functional Materials, 2018, 16 (3), 171.
10 Wang Y S, Dai J G, Wang L, et al. Chemosphere, 2018, 19, 90.
11 Li Y,Fang J Q. Bulletin of the Chinese Ceramic Society, 2019, 38(3), 901(in Chinese).
李晔, 方嘉淇.硅酸盐通报,2019, 38 (3), 901.
12 Cao X, Ma R, Zhang Q S. Chemosphere, 2020, 261,127789.
13 Fu X J, Lai Z Y, Lai X C.Construction and Building Materials, 2016, 127, 712.
14 Brückner T, Meininger M, Groll J, et al. Materials, 2019, 12,1.
15 Klammert U, Vorndran E, Reuther T, et al. Journal of Materials Science-Materials in Medicine, 2010, 21 (11), 2947.
16 Haque M A, Chen B. Construction and Building Materials, 2019, 211, 885.
17 Hall D A, Stevens R, El-Jazairi B.Cement and Concrete Research, 2001, 31 (3), 455.
18 Ribeiro D V, Paula G R, Morelli M R. Construction and Building Mate-rials, 2019, 214, 557.
19 Zheng W X, Xiao X Y, Wen J, et al. Sustainability, 2021, 13, 2429.
20 Souza T M, Luz A P, Pagliosa C, et al. Ceramics International, 2015, 41(9), 11143.
21 Nishizuka M, Ogawa H, Kan A. Ferroelectrics, 2009, 388, 101.
22 Wu C Y, Cao C, Zhao H F, et al.Construction and Building Materials, 2018, 172(30), 597.
23 Chen W H, Wu C Y, Yu H F, et al.Journal of Advanced Concrete Technology, 2017, 15, 269.
24 Dong J M, Xiao X Y, Li Y, et al.Materials Reports, 2020, 34(5), 10041(in Chinese).
董金美, 肖学英, 李颖, 等.材料导报, 2020, 34(5), 10041.
25 Zheng W X, Dong J M, Wen J, et al.Applied Sciences, 2021, 11, 4193.
26 Dong J M, Yu H F, Zhang L M. Journal of Salt Lake Research, 2010,18 (1), 38 (in Chinese).
董金美, 余红发, 张立明.盐湖研究, 2010, 18(1), 38.
27 Lee K H, Yoon H S, Yang K H. Construction and Building Materials, 2017, 137,160.
28 Ma H Y, Xu B W, Liu J, et al. Materials and Design, 2014, 64,497.
29 Yang J M, Wang L M, Zhang J. Cement and Concrete Composites, 2019,103,175.
30 You C, Qian J S, Qin J H, et al. Cement and Concrete Research, 2015, 78, 179.
31 Ren C Z, Wang W L, Wu S. Construction and Building Materials, 2019, 202, 246.
32 Chang Y, Shi C J, Yang N. Journal of the Chinese Ceramic Society, 2013,41(4), 492 (in Chinese).
常远,史才军,杨楠,等. 硅酸盐学报, 2013, 41(4), 492.
[1] 谢奕心, 程晓农, 鞠玉琳, 魏琪. H13及H13改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报, 2023, 37(23): 22040214-8.
[2] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[3] 房洪杰, 刘慧, 孙杰, 张倩, 余琨. 5xxx系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 22010082-10.
[4] 张星星, 高相东, 董余兵, 段灯, 李效民. SiO2气凝胶@聚合物复合材料的制备方法及性能研究进展[J]. 材料导报, 2023, 37(21): 22040191-11.
[5] 袁江杭, 曲兆明, 赵芳, 许宝才, 孙肖宁, 王庆国. 片形羰基铁粉热处理工艺及其吸波性能研究[J]. 材料导报, 2022, 36(18): 21040268-6.
[6] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[7] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[8] 杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
[9] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[10] 丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed