Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21040268-6    https://doi.org/10.11896/cldb.21040268
  金属与金属基复合材料 |
片形羰基铁粉热处理工艺及其吸波性能研究
袁江杭1, 曲兆明1, 赵芳2, 许宝才3, 孙肖宁1, 王庆国1,*
1 陆军工程大学石家庄校区电磁环境效应重点实验室,石家庄 050003
2 陆军工程大学石家庄校区车辆与电气工程系,石家庄 050003
3 河北工业职业技术大学材料工程系,石家庄 050091
Research on Heat Treatment Technology and Wave Absorption Property of Flake Carbonyl Iron Powder
YUAN Jianghang1, QU Zhaoming1, ZHAO Fang2, XU Baocai3, SUN Xiaoning1, WANG Qingguo1,*
1 National Key Laboratory on Electromagnetic Enviroment Effects, Army Engineering University, Shijiazhuang Campus, Shijiazhuang 050003, China
2 Department of Vehicle and Electrical Engineering, Army Engineering University, Shijiazhuang Campus, Shijiazhuang 050003, China
3 Department of Materials Engineering, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China
下载:  全 文 ( PDF ) ( 5614KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以粒径3~5 μm原始羰基铁粉(Carbonyl iron,CI)为原料,对羰基铁粉进行球磨和热处理,制备出片形化改性吸波剂,分析了其电磁参数,并仿真预测了热处理温度和涂层厚度对其吸波性能的影响规律。使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、振动样品磁强计(VSM)、矢量网络分析仪分别表征了各阶段样品的微观形貌、物相、静磁性能、电磁参数,研究了球磨工艺和热处理工艺对羰基铁粉的吸波性能的影响。结果表明:球磨工艺能使羰基铁粉形貌发生片形化转变,400 ℃内的热处理温度对羰基铁粉微观形貌没有影响。球磨工艺减弱了原始羰基铁粉的结晶度,使其矫顽力增加,而热处理工艺能提高铁粉的结晶度并使其矫顽力减小。球磨工艺和热处理工艺都会使羰基铁粉的最低反射率向低频移动。球磨3 h后再经过400 ℃热处理后的样品具有最强的吸波性能。2 mm厚的材料有效吸波带宽分布在5.11~11.36 GHz;3 mm厚的材料有效吸波带宽分布在2.45~6.84 GHz,此时材料在S波段和C波段吸波性能优良。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁江杭
曲兆明
赵芳
许宝才
孙肖宁
王庆国
关键词:  羰基铁粉  吸波材料  球磨工艺  热处理工艺    
Abstract: The original carbonyl iron powder with the particle size of 3—5 μm was used as the raw material to prepare absorbing materials. After ball mil-ling and heat treatment of carbonyl iron powder, the flake shape modified absorbent was prepared. The electromagnetic parameters were analyzed and the effects of heat treatment temperature and coating thickness on its absorbing performance were predicted by simulation. Scanning electron microscopy (SEM), X-ray diffraction (XRD), vibration sample magnetometer (VSM) and vector network analyzer were used to characterize the micromorphology, phase state, static magnetic properties and electromagnetic parameters of the samples at each stage. The effects of ball milling and heat treatment on the wave absorption properties of carbonyl iron powder were investigated. The results show that the morphology of carbonyl iron powder can be processed as flake shape by ball milling, and the microstructure of carbonyl iron powder has no changes after heat treatment at the temperatures lower than 400 ℃. The ball milling process decreases the crystallinity of the original carbonyl iron powder and increases its coercoerity, while the heat treatment process may increase the crystallinity of the iron powder and reduce its coercoerity. Both ball milling and heat treatment can make the lowest reflectivity of carbonyl iron powder move to lower frequency. After 3 h ball milling and heat treatment at temperature 400 ℃, the sample has the best wave absorption performance. The effective absorbing bandwidth of the material with a thickness of 2 mm ranges from 5.11 GHz to 11.36 GHz, and the effective absorbing bandwidth of the material with a thickness of 3 mm ranges from 2.45 GHz to 6.84 GHz, which shows excellent absorbing performance in the S-band and C-band.
Key words:  carbonyl iron powder    absorbing material    ball milling process    heat treatment process
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TB34  
基金资助: 电磁环境效应国家级重点实验室基金(6142205180404)
通讯作者:  *qwang1964@163.com   
作者简介:  袁江杭,陆军工程大学石家庄校区电磁环境效应重点实验室硕士研究生,师从王庆国教授。目前主要从事吸波材料方向研究。王庆国,1988年获中国石油大学硕士学位,2005年获英国卢敦大学博士学位。2000—2001年,在英国赫尔大学应用物理系担任访问研究员。2005年,在英国利物浦大学电子与电气工程系担任高级研究员。2005年起任陆军工程大学石家庄校区电磁环境效应重点实验室教授。目前的研究方向包括电磁防护材料、电磁环境对电子系统的影响、混响室。在国际期刊或国际会议论文集发表论文130多篇。
引用本文:    
袁江杭, 曲兆明, 赵芳, 许宝才, 孙肖宁, 王庆国. 片形羰基铁粉热处理工艺及其吸波性能研究[J]. 材料导报, 2022, 36(18): 21040268-6.
YUAN Jianghang, QU Zhaoming, ZHAO Fang, XU Baocai, SUN Xiaoning, WANG Qingguo. Research on Heat Treatment Technology and Wave Absorption Property of Flake Carbonyl Iron Powder. Materials Reports, 2022, 36(18): 21040268-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040268  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21040268
1 Suo Q T, Xu B C, Wang J J, et al. New Chemical Materials, 2019, 47(4), 25(in Chinese).
索庆涛, 许宝才, 王建江, 等. 化工新型材料, 2019, 47(4), 25.
2 Snoek J L. Physica(Amsterdam), 1948, 204(14), 207.
3 Xu F X,Zeng G X,Zhang H Y, et al. Electronic Components and Mate-rials, 2014, 33(12), 41(in Chinese).
徐方星, 曾国勋, 张海燕, 等. 电子元件与材料,2014,33(12),41.
4 Wang X, Gong R Z, Li P G, et al. Materials Science and Engineering A, 2007, 466, 178.
5 Zhao R F, Liu Y,Feng Z K. Metallic Functional Materials, 2006, 13(4), 4(in Chinese).
赵仁富, 刘尧, 冯则坤. 金属功能材料, 2006, 13(4), 4.
6 Qin H.Preparation and properties of FeSi alloy sheet absorbing materials.Master's Thesis, Xi'an University of Architecture and Technology, China, 2014(in Chinese).
秦浩. FeSi系合金片状吸波材料的制备及性能的研究. 硕士学位论文, 西安建筑科技大学, 2014.
7 Zhou Q, Lu M. Ordance Material Science and Engineering, 2013, 36(6), 91(in Chinese).
周乾, 陆明. 兵器材料科学与工程, 2013, 36(6), 91.
8 Qiu Q,Zhang Y Q,Zhang X. Electronic Components and Materials, 2009, 28(8), 78(in Chinese).
邱琴, 张宴清, 张雄. 电子元件与材料, 2009, 28(8), 78.
9 Zhang Y L, Li P, Shi L. Stealth materials, Chemical Industry Press, China, 2018(in Chinese).
张玉龙, 李萍, 石磊. 隐身材料, 化学工业出版社, 2018.
10 Liu Y,Li R,Jia Y, et al. Chinese Physics B, 2020, 29(6), 067701.
11 Maklakov S S, Lagarkov A N, Maklakov S A, et al. Journal of Alloys and Compounds, 2017, 706, 267.
12 Suo Q T. Studies on preparation and electromagnetic properties of ultrafine FeNi composite flake nanoparticles in low frequency.Master's Thesis, Army Engineering University, China, 2020(in Chinese).
索庆涛. 超细FeNi复合片状纳米粒子的制备与低频电磁性能研究. 硕士学位论文, 陆军工程大学, 2020.
13 Kim S W, Yoon Y W, Lee S J, et al. Journal of Magnetism and Magne-tism and Magnetic Materials, 2007, 316, 472.
14 Wang B G, Sun Q S. Sichuan Metallurgy, 1988(6), 46(in Chinese).
王炳根, 孙其顺. 四川冶金, 1988(6), 46.
15 Li X G, Lyu H L, Ji G B, et al. Journal of Aeronautical Materials, 2013, 33(5), 46(in Chinese).
李晓光, 吕华良, 姬广斌,等. 航空材料学报, 2013, 33(5), 46.
16 Liu H, Gao Y L,Zhao D L, et al. Safety & EMC, 2010 (6), 71(in Chinese).
刘辉, 高云雷, 赵东林, 等. 安全与电磁兼容, 2010 (6), 71.
17 Cui Z Q, Qin Y C. Metalology and heat treatment, China Machine Press, China, 2020(in Chinese).
崔忠圻, 覃耀春. 金属学与热处理, 机械工业出版社, 2020.
18 Chen X M, Jiang J J,Bie S W, et al. Electronic Components and Mate-rials, 2011, 30(5), 35(in Chinese).
陈旭明, 江建军, 别少伟, 等. 电子元件与材料, 2011, 30(5), 35.
19 Walser R M, Kang W. IEEE Transactions on Magnetics, 1998, 34, 1144.
20 Liu R Q, Xie W B, Yang S L, et al. Special Casting & Nonferrous Alloys, 2014, 34(11), 1199(in Chinese).
柳瑞清, 谢伟滨, 杨胜利, 等. 特种铸造及有色合金, 2014, 34(11), 1199.
21 Liu W Y, Zhou Y Y, Xin Y P. Safety & EMC, 2014 (6), 75(in Chinese).
刘文言, 周莹莹, 信云鹏. 安全与电磁兼容, 2014(6), 75.
22 He J, Wang W, Guan J. Journal of Applied Physics, 2012, 111(9), 93924.
23 Lian L X, Feng S D, Zhou P H, et al. Rare Metal Materials and Engineering, 2007, 36(4), 717(in Chinese).
连利仙, 冯少东, 周佩珩, 等. 稀有金属材料与工程, 2007, 36(4), 717.
24 Wen G, Zhao X, Liu Y, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(12), 1.
25 Wen F S, Zhang F, Liu Z Y. Journal of Physical Chemistry C, 2011, 115(29), 14025.
26 Wang W, Guo J X, Long C, et al. Journal of Alloys and Compounds, 2015, 637, 106.
27 Li Z. Preparation and study on properties of electromagnetic shielding coatings with broadband absorption.Master's Thesis, The Ordnance Engineering College, China, 2016(in Chinese).
李泽. 宽频吸收型电磁屏蔽涂层的设计制备与性能研究. 硕士学位论文, 军械工程学院, 2016.
28 Deng L J, Zhou P H, Xie J L, et al. Journal of Applied Physics, 2007, 101, 3916.
[1] 吕秀娟, 唐晓龙, 易红宏, 赵顺征, 任晨阳. 微波诱导催化反应在环境净化中的应用研究进展[J]. 材料导报, 2022, 36(18): 20100163-9.
[2] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[3] 宋友婷, 黄聪颖, 封哲宇, 时胜圆, 李敏华, 董建峰. 吸透一体超材料研究进展[J]. 材料导报, 2022, 36(11): 21060182-9.
[4] 穆武第, 许永平, 盛德军. 尖锥型结构宽频吸波材料设计[J]. 材料导报, 2021, 35(z2): 115-117.
[5] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[6] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[7] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[8] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[9] 魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
[10] 杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
[11] 池强, 谢磊, 常良, 李强, 董亚强. 羰基铁粉/FeSiBCCr复合非晶磁粉芯的性能[J]. 材料导报, 2021, 35(10): 10023-10028.
[12] 刘凡, 赵晓明. 聚噻吩及其衍生物PEDOT在吸波领域的应用现状[J]. 材料导报, 2020, 34(Z1): 507-510.
[13] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[14] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[15] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed