Abstract: The wide application of electronic equipment brings convenience to people's life but also causes serious problems of electromagnetic interfe-rence and electromagnetic radiation pollution. Therefore, the development of lighter, thinner and more efficient electromagnetic wave absorbing materials with a wider absorption frequency is of great significance to maintain the normal operation of the equipment and protect the health of the people. The metal-organic frameworks (MOFs) are a kind of compound that combine metal ions or metal clusters with organic ligands to form one-dimensional or multi-dimensional structures. MOFs are characterized by extra large specific surface area, ordered accessible cavities, tunability of composition and structure. By calcining MOFs at high temperature, light porous carbon-based materials with unique microstructure can be prepared, which contain metal and metal oxide nanoparticles produced by calcination. Such porous carbon-based materials possess excellent wave absorption performance and absorption bandwidth due to their rich electromagnetic loss mechanism, which has attracted the attention of researchers. In this paper, the research progress of MOFs-based core-shell structure absorbing materials used in the field of electromagnetic wave absorption is reviewed from the perspectives of structure, performance and preparation methods. Firstly, the microstructures, electromagnetic wave absorption performances and the corresponding absorbing mechanism of different MOFs-based composites are introduced. And then, their preparation methods are summarized. Finally, the current problems that need to be solved of the electromagnetic wave absorbing materials with core-shell structures based on MOFs are overviewed. It is expected to provide a reference for the research and application of such composites in the field of electromagnetic wave absorption.
1 Wen B Y, Wang X J, Zhang Y. Composites Science and Technology, 2019, 169, 127. 2 Wu X M, Wen B Y. Composites Science and Technology, 2020, 199, 108343. 3 Wang X J, Wen B Y, Yang X J. Composites Part B: Engineering, 2019, 173, 106904. 4 Wen B Y, Huan C H, Liu P, et al. Polymer Composite, 2019, 40(5), 1842. 5 Li B P, Wang C G, Wang W. Materials Reports A: Review Papers, 2012, 26(4), 9(in Chinese). 李斌鹏, 王成国, 王雯. 材料导报:综述篇, 2012, 26(4), 9. 6 An Y, Wei H Y, He M, et al. Materials Reports A: Review Papers, 2017, 31(11), 49(in Chinese). 安锐, 韦红余, 何敏, 等. 材料导报:综述篇, 2017, 31(11), 49. 7 Cheng J B, Zhao H B, Li M E, et al. Materials China, 2019(9), 897(in Chinese). 程金波, 赵海波, 李蒙恩, 等. 中国材料进展, 2019(9), 897. 8 Ma X, Peng H, Yang H,et al. Chinese Science Bulletin, 2019, 64, 3188. 9 Huang J L, Zhou L, Chen M, et al. Materials China, 2020(2), 138(in Chinese). 黄巨龙, 周亮, 陈萌, 等. 中国材料进展, 2020(2), 138. 10 Zhao Y, Wu H,Emge D T J, et al. Chemistry-A European Journal, 2011, 17(18), 5101. 11 Li H L,Eddaoudi M M, O'Keeffe M, et al. Nature, 1999, 402, 6759. 12 Butova V V, Soldatov M A, Guda A A, et al. Russian Chemical Reviews, 2016, 85(3), 280. 13 Cho H S, Deng H,Miyasaka K, et al. Nature, 2015, 527(7579), 503. 14 Li Z, Han X, Ma Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(7), 8904. 15 Liang X, Quan B, Sun Y, et al. Particle & Particle Systems Characterization, 2017, 34(5), 1700006. 16 Liu D, Du Y, Wang F, et al. Carbon, 2020, 157, 478. 17 Wang R, He M, Zhou Y, et al. Carbon, 2020, 156, 378. 18 Wang L, Bai X, Wen B, et al. Composites Part B: Engineering, 2019, 166, 464. 19 Qiu X, Wang L, Zhu H, et al. Nanoscale, 2017, 9(22), 7408. 20 Quan B, Liang X, Ji G, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9964. 21 Liu W, Liu L, Yang Z, et al. ACS Applied Materials & Interfaces, 2018, 10(10), 8965. 22 Lu Y, Wang Y, Li H, et al. ACS Applied Materials & Interfaces, 2015, 7(24), 13604. 23 Wu N, Xu D, Wang Z, et al. Carbon, 2019, 145, 433. 24 Zhang X,Qiao J, Liu C, et al. Inorganic Chemistry Frontiers, 2020, 7(2), 385. 25 Zhang X,Qiao J, Zhao J, et al. ACS Applied Materials & Interfaces, 2019, 11(39), 35959. 26 Liang X, Quan B, Ji G, et al. Inorganic Chemistry Frontiers, 2016, 3(12), 1516. 27 Liu Q, Liu X, Feng H, et al. Chemical Engineering Journal, 2017, 314, 320. 28 Ma J, Liu W, Liang X, et al. Journal of Alloys and Compounds, 2017, 728, 138. 29 Qiang R, Du Y, Zhao H, et al. Journal of Materials Chemistry A, 2015, 3(25), 13426. 30 Zhou C, Wu C, Liu D, et al. Chemistry, 2019, 25(9), 2234. 31 Zhang Z,Lyu Y, Chen X, et al. Journal of Magnetism and Magnetic Materials, 2019, 487, 165334. 32 Liu D, Du Y, Xu P, et al. Journal of Materials Chemistry C, 2019, 7(17), 5037. 33 Qiu Y, Lin Y, Yang H, et al. Chemical Engineering Journal, 2020, 383, 123207. 34 Wang S, Peng S, Zhong S, et al. Journal of Materials Chemistry C, 2018,6(35), 9465. 35 Xiong J, Xiang Z, Zhao J, et al. Carbon, 2019, 154, 391. 36 Liao Q, He M, Zhou Y, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 29136. 37 Wang L, Yu X, Li X, et al. Chemical Engineering Journal, 2020, 383, 123099. 38 Liu P, Gao S, Wang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(28), 25624. 39 Li X, Cui E, Xiang Z, et al. Journal of Alloys and Compounds, 2020, 819, 152952. 40 Yan J, Huang Y, Yan Y, et al. ACS Applied Materials & Interfaces, 2019, 11(43), 40781. 41 Zeng X, Yang B, Zhu L, et al. RSC Advances,2016,6(107),105644. 42 Ouyang J, He Z, Zhang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(42), 39304. 43 Liu Z, Yuan J, Zhang H, et al. Nano, 2019, 14(1), 1950005. 44 Shu R, Li W, Wu Y, et al. Chemical Engineering Journal, 2019, 362, 513. 45 Huang L, Huang S, Yang Z, et al. Nanomaterials (Basel), 2018, 8(8), 600. 46 Wang Y, Wang H, Ye J, et al. Chemical Engineering Journal, 2019, 383, 123096. 47 Jia H, Xing H, Ji X, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(4), 3386. 48 Zhao Z, Xu S, Du Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 7183. 49 Zhang X, Ji G, Liu W, et al. Journal of Materials Chemistry C, 2016, 4(9), 1860. 50 Ma J, Liu W, Liang X, et al. Journal of Alloys and Compounds, 2017, 728, 138. 51 Wang K, Chen Y, Tian R, et al. ACS Applied Materials & Interfaces, 2018, 10(13), 11333. 52 Zhu M, Wang H, Zhang L, et al. Chemical Engineering Journal, 2017, 326, 945. 53 Stock N, Biswas S. Chemical Reviews, 2012, 112(2), 933. 54 Braga D,Giaffreda S L, Grepioni F, et al. Dalton Transactions, 2006, 14 (10), 1249. 55 Wang B,Ruan W, Mu C, et al. Nanotechnology, 2019, 31(9), 095703. 56 Zhang X, Ji G, Liu W, et al. Nanoscale, 2015, 7(30), 12932. 57 Ma J, Zhang X, Liu W, et al. Journal of Materials Chemistry C, 2016, 4(48), 11419. 58 Walther A, Muller A H. Chemical Reviews, 2013, 113(7), 5194.