Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21030206-10    https://doi.org/10.11896/cldb.21030206
  金属与金属基复合材料 |
MOFs基核壳结构电磁波吸收材料研究进展
姜超, 华楚侨, 温变英*
北京工商大学化学与材料工程学院,北京 100048
Overview of Electromagnetic Wave Absorbing Materials with Core-Shell Structure Based on MOFs
JIANG Chao, HUA Chuqiao, WEN Bianying*
College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
下载:  全 文 ( PDF ) ( 49714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电子设备的广泛应用在给人们生活带来方便的同时也造成了严重的电磁干扰和电磁辐射污染问题。开发更轻、更薄、吸收频率更宽的高效电磁波吸收材料,对维持设备的正常运行和保障人们的身体健康具有重要意义。
   金属-有机骨架(Metal-organic frameworks,MOFs)材料是由金属离子或金属团簇与有机配体结合形成的一维或多维结构的一类化合物。MOFs具有超大的比表面积、有序的可进入空腔以及可调的组成和结构等特点,通过对其进行高温煅烧可以制备出具有特殊微观结构的轻质多孔碳材料,其中包含了因煅烧而产生的金属和金属氧化物纳米粒子。此种多孔碳材料因具有丰富的电磁损耗机制而拥有了优异的吸波性能和吸收带宽,因而受到了研究者的关注。
   本文从结构、性能和制备方法等方面综述了MOFs基核壳结构吸波材料在电磁波吸收领域的研究进展。首先介绍了不同MOFs基核壳结构吸波材料的微观结构及其吸波性能和机理,然后归纳了不同类型MOFs基核壳结构吸波材料的制备方法,最后对目前MOFs基核壳结构吸波材料制备和应用中亟待解决的问题进行了总结,以期为MOFs在电磁波吸收领域的研究和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜超
华楚侨
温变英
关键词:  金属有机骨架  核壳结构  吸波材料  制备方法    
Abstract: The wide application of electronic equipment brings convenience to people's life but also causes serious problems of electromagnetic interfe-rence and electromagnetic radiation pollution. Therefore, the development of lighter, thinner and more efficient electromagnetic wave absorbing materials with a wider absorption frequency is of great significance to maintain the normal operation of the equipment and protect the health of the people.
The metal-organic frameworks (MOFs) are a kind of compound that combine metal ions or metal clusters with organic ligands to form one-dimensional or multi-dimensional structures. MOFs are characterized by extra large specific surface area, ordered accessible cavities, tunability of composition and structure. By calcining MOFs at high temperature, light porous carbon-based materials with unique microstructure can be prepared, which contain metal and metal oxide nanoparticles produced by calcination. Such porous carbon-based materials possess excellent wave absorption performance and absorption bandwidth due to their rich electromagnetic loss mechanism, which has attracted the attention of researchers.
In this paper, the research progress of MOFs-based core-shell structure absorbing materials used in the field of electromagnetic wave absorption is reviewed from the perspectives of structure, performance and preparation methods. Firstly, the microstructures, electromagnetic wave absorption performances and the corresponding absorbing mechanism of different MOFs-based composites are introduced. And then, their preparation methods are summarized. Finally, the current problems that need to be solved of the electromagnetic wave absorbing materials with core-shell structures based on MOFs are overviewed. It is expected to provide a reference for the research and application of such composites in the field of electromagnetic wave absorption.
Key words:  metal-organic frameworks    core-shell structure    wave-absorbing material    preparation method
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TB34  
基金资助: 北京市自然科学基金暨北京市教委科技计划重点项目(KZ202110011018)
通讯作者:  *wenbianying@tsinghua.org.cn   
作者简介:  姜超,2018年毕业于北京工商大学高分子材料与工程专业,获得工学学士学位。现为北京工商大学化学材料与工程学院硕士研究生,在温变英教授的指导下进行研究。目前主要研究领域为MOFs基吸波材料。温变英,北京工商大学化学与材料工程学院教授,北京市高等学校教学名师。1984年和1998年在中北大学分别获得学士和硕士学位,2003年博士毕业于北京化工大学,2003—2005年在清华大学进行博士后研究。主要从事高分子材料与功能复合材料研究。已在国内外重要学术期刊发表学术论文140余篇。21030206-21030206-
引用本文:    
姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
JIANG Chao, HUA Chuqiao, WEN Bianying. Overview of Electromagnetic Wave Absorbing Materials with Core-Shell Structure Based on MOFs. Materials Reports, 2022, 36(16): 21030206-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030206  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21030206
1 Wen B Y, Wang X J, Zhang Y. Composites Science and Technology, 2019, 169, 127.
2 Wu X M, Wen B Y. Composites Science and Technology, 2020, 199, 108343.
3 Wang X J, Wen B Y, Yang X J. Composites Part B: Engineering, 2019, 173, 106904.
4 Wen B Y, Huan C H, Liu P, et al. Polymer Composite, 2019, 40(5), 1842.
5 Li B P, Wang C G, Wang W. Materials Reports A: Review Papers, 2012, 26(4), 9(in Chinese).
李斌鹏, 王成国, 王雯. 材料导报:综述篇, 2012, 26(4), 9.
6 An Y, Wei H Y, He M, et al. Materials Reports A: Review Papers, 2017, 31(11), 49(in Chinese).
安锐, 韦红余, 何敏, 等. 材料导报:综述篇, 2017, 31(11), 49.
7 Cheng J B, Zhao H B, Li M E, et al. Materials China, 2019(9), 897(in Chinese).
程金波, 赵海波, 李蒙恩, 等. 中国材料进展, 2019(9), 897.
8 Ma X, Peng H, Yang H,et al. Chinese Science Bulletin, 2019, 64, 3188.
9 Huang J L, Zhou L, Chen M, et al. Materials China, 2020(2), 138(in Chinese).
黄巨龙, 周亮, 陈萌, 等. 中国材料进展, 2020(2), 138.
10 Zhao Y, Wu H,Emge D T J, et al. Chemistry-A European Journal, 2011, 17(18), 5101.
11 Li H L,Eddaoudi M M, O'Keeffe M, et al. Nature, 1999, 402, 6759.
12 Butova V V, Soldatov M A, Guda A A, et al. Russian Chemical Reviews, 2016, 85(3), 280.
13 Cho H S, Deng H,Miyasaka K, et al. Nature, 2015, 527(7579), 503.
14 Li Z, Han X, Ma Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(7), 8904.
15 Liang X, Quan B, Sun Y, et al. Particle & Particle Systems Characterization, 2017, 34(5), 1700006.
16 Liu D, Du Y, Wang F, et al. Carbon, 2020, 157, 478.
17 Wang R, He M, Zhou Y, et al. Carbon, 2020, 156, 378.
18 Wang L, Bai X, Wen B, et al. Composites Part B: Engineering, 2019, 166, 464.
19 Qiu X, Wang L, Zhu H, et al. Nanoscale, 2017, 9(22), 7408.
20 Quan B, Liang X, Ji G, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9964.
21 Liu W, Liu L, Yang Z, et al. ACS Applied Materials & Interfaces, 2018, 10(10), 8965.
22 Lu Y, Wang Y, Li H, et al. ACS Applied Materials & Interfaces, 2015, 7(24), 13604.
23 Wu N, Xu D, Wang Z, et al. Carbon, 2019, 145, 433.
24 Zhang X,Qiao J, Liu C, et al. Inorganic Chemistry Frontiers, 2020, 7(2), 385.
25 Zhang X,Qiao J, Zhao J, et al. ACS Applied Materials & Interfaces, 2019, 11(39), 35959.
26 Liang X, Quan B, Ji G, et al. Inorganic Chemistry Frontiers, 2016, 3(12), 1516.
27 Liu Q, Liu X, Feng H, et al. Chemical Engineering Journal, 2017, 314, 320.
28 Ma J, Liu W, Liang X, et al. Journal of Alloys and Compounds, 2017, 728, 138.
29 Qiang R, Du Y, Zhao H, et al. Journal of Materials Chemistry A, 2015, 3(25), 13426.
30 Zhou C, Wu C, Liu D, et al. Chemistry, 2019, 25(9), 2234.
31 Zhang Z,Lyu Y, Chen X, et al. Journal of Magnetism and Magnetic Materials, 2019, 487, 165334.
32 Liu D, Du Y, Xu P, et al. Journal of Materials Chemistry C, 2019, 7(17), 5037.
33 Qiu Y, Lin Y, Yang H, et al. Chemical Engineering Journal, 2020, 383, 123207.
34 Wang S, Peng S, Zhong S, et al. Journal of Materials Chemistry C, 2018,6(35), 9465.
35 Xiong J, Xiang Z, Zhao J, et al. Carbon, 2019, 154, 391.
36 Liao Q, He M, Zhou Y, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 29136.
37 Wang L, Yu X, Li X, et al. Chemical Engineering Journal, 2020, 383, 123099.
38 Liu P, Gao S, Wang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(28), 25624.
39 Li X, Cui E, Xiang Z, et al. Journal of Alloys and Compounds, 2020, 819, 152952.
40 Yan J, Huang Y, Yan Y, et al. ACS Applied Materials & Interfaces, 2019, 11(43), 40781.
41 Zeng X, Yang B, Zhu L, et al. RSC Advances,2016,6(107),105644.
42 Ouyang J, He Z, Zhang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(42), 39304.
43 Liu Z, Yuan J, Zhang H, et al. Nano, 2019, 14(1), 1950005.
44 Shu R, Li W, Wu Y, et al. Chemical Engineering Journal, 2019, 362, 513.
45 Huang L, Huang S, Yang Z, et al. Nanomaterials (Basel), 2018, 8(8), 600.
46 Wang Y, Wang H, Ye J, et al. Chemical Engineering Journal, 2019, 383, 123096.
47 Jia H, Xing H, Ji X, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(4), 3386.
48 Zhao Z, Xu S, Du Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 7183.
49 Zhang X, Ji G, Liu W, et al. Journal of Materials Chemistry C, 2016, 4(9), 1860.
50 Ma J, Liu W, Liang X, et al. Journal of Alloys and Compounds, 2017, 728, 138.
51 Wang K, Chen Y, Tian R, et al. ACS Applied Materials & Interfaces, 2018, 10(13), 11333.
52 Zhu M, Wang H, Zhang L, et al. Chemical Engineering Journal, 2017, 326, 945.
53 Stock N, Biswas S. Chemical Reviews, 2012, 112(2), 933.
54 Braga D,Giaffreda S L, Grepioni F, et al. Dalton Transactions, 2006, 14 (10), 1249.
55 Wang B,Ruan W, Mu C, et al. Nanotechnology, 2019, 31(9), 095703.
56 Zhang X, Ji G, Liu W, et al. Nanoscale, 2015, 7(30), 12932.
57 Ma J, Zhang X, Liu W, et al. Journal of Materials Chemistry C, 2016, 4(48), 11419.
58 Walther A, Muller A H. Chemical Reviews, 2013, 113(7), 5194.
[1] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[2] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[3] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[4] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[5] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[6] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[7] 纪铭悦, 田晓, 刘昕瑀, 田璐, 杨艳春, 塔娜. 新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展[J]. 材料导报, 2022, 36(15): 21030222-10.
[8] 王世界, 尹艺程, 邱鑫, 康国卫, 刘新红, 贾全利, 张少伟. 超高温多孔陶瓷的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(12): 20100045-8.
[9] 宋友婷, 黄聪颖, 封哲宇, 时胜圆, 李敏华, 董建峰. 吸透一体超材料研究进展[J]. 材料导报, 2022, 36(11): 21060182-9.
[10] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[11] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[12] 穆武第, 许永平, 盛德军. 尖锥型结构宽频吸波材料设计[J]. 材料导报, 2021, 35(z2): 115-117.
[13] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[14] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[15] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed