Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21030158-4    https://doi.org/10.11896/cldb.21030158
  无机非金属及其复合材料 |
协同掺杂MnO2与CeO2对钙钛矿类LaAlO3陶瓷显微结构与红外辐射性能的影响
王博知1, 孙维义2, 简韬1, 张云蔚1, 吴开霞1, 李三雁1,*
1 四川大学锦城学院,成都 611731
2 四川大学建筑与环境学院,成都 610065
Effect of Co-doping MnO2 and CeO2 on Microstructure and Infrared Radiation Performance of Perovskite LaAlO3 Ceramics
WANG Bozhi1, SUN Weiyi2, JIAN Tao1, ZHANG Yunwei1, WU Kaixia1, LI Sanyan1,*
1 Jincheng College, Sichuan University, Chengdu 611731, China
2 School of Architecture and Environment, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 9889KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用固相反应法制备La0.8Ce0.2MnxAl1-xO3 (x=0、0.15、0.3、0.45、0.6)钙钛矿类红外陶瓷,研究了MnO2与CeO2协同掺杂对LaAlO3钙钛矿陶瓷物相变化、微观结构、红外辐射特性的影响。结果表明,固定CeO2添加量,样品的红外辐射性能随着MnO2掺入量的增加而得到提升。比较对照组La0.8Ce0.2AlO3与性能最佳组La0.8Ce0.2Mn0.6Al0.4O3样品发现,样品的红外发射率在8~14 μm远红外波段范围内由0.596提升至0.909,提高了52.5%。结果证明了MnO2与CeO2共掺杂的方式改变了LaAlO3晶体结构中的离子分布状态并提高了连接键非对称振动强度,最终有效地提升了LaAlO3陶瓷的远红外辐射性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博知
孙维义
简韬
张云蔚
吴开霞
李三雁
关键词:  协同掺杂  LaAlO3  红外辐射  发射率    
Abstract: In this work, La0.8Ce0.2MnxAl1-xO3 (x=0, 0.15, 0.3, 0.45, 0.6) perovskite infrared ceramics were prepared through solid-state reaction. The effect of co-doping MnO2 and CeO2 on the phase change, microstructure and infrared radiation characteristics of LaAlO3 perovskite ceramics were studied. The results show that the infrared radiation performance of the samples was improved with the increase of the MnO2 content, when the amount of CeO2 was fixed. The infrared emissivity of La0.8Ce0.2AlO3 in the control group and La0.8Ce0.2Mn0.6Al0.4O3 in the best performance group increased from 0.596 to 0.909 in the far infrared band range of 8—14 μm, increasing by 52.5%. It is proved that the co-doping of MnO2 and CeO2 can change the ion distribution state in LaAlO3 crystal structure, enhance the asymmetric vibration intensity of the link bond and finally effectively improve the far-infrared radiation performance of LaAlO3 ceramics.
Key words:  coordinated doping    LaAlO3    infrared radiation    emissivity
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TQ171  
基金资助: 四川大学锦城学院校级基金(2020jcky0014)
通讯作者:  *615971969@qq.com   
作者简介:  王博知,2018年毕业于四川大学建筑与环境学院环境工程专业,获得工程硕士学位。研究方向为环境材料。李三雁,教授,硕士研究生导师,高级工程师,发表科研论文51篇,编辑教材两本。
引用本文:    
王博知, 孙维义, 简韬, 张云蔚, 吴开霞, 李三雁. 协同掺杂MnO2与CeO2对钙钛矿类LaAlO3陶瓷显微结构与红外辐射性能的影响[J]. 材料导报, 2022, 36(16): 21030158-4.
WANG Bozhi, SUN Weiyi, JIAN Tao, ZHANG Yunwei, WU Kaixia, LI Sanyan. Effect of Co-doping MnO2 and CeO2 on Microstructure and Infrared Radiation Performance of Perovskite LaAlO3 Ceramics. Materials Reports, 2022, 36(16): 21030158-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030158  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21030158
1 Dolgorsuren A, Yamashita K, Dalkhsuren S O, et al. Journal of Hard Tissue Biology, 2014, 23(4),423.
2 Wang L J, Liang J S, Liang G C, et al. Journal of Rare Earth, 2004, 22,255.
3 Leung T K, Lee C M, Lin S L, et al. Journal of Medical & Biological Engineering, 2014, 34(1),69.
4 Sheng G. Guangzhou Environmental Science,2004,19(1),32(in Chinese).
绳纲. 广州环境科学, 2004, 19(1),32.
5 Ziaei M E,Clayman B P, Buckley R G, et al. Physica C, 1991, 176(1-3),242.
6 Clayman B P, Wang S H, Song Q. Physica B Condensed Matter, 1990, 165-166(2),1233.
7 Li L G. Preparation and properties of novel near/mid infrared luminescent glass. Master's Thesis, Ningbo University, China, 2017(in Chinese).
李乐刚. 新型近/中红外发光玻璃的制备与性能研究.硕士学位论文,宁波大学,2017.
8 Tu W M, Peng H H, Xu B B, et al. Journal of Wuhan University of Technology, 2007, 29(6),43.
9 Huang Z Z, Shen J Q. Journal of Inorganic Materials,1999,14(6),939.
10 Wang S H, Zhou D, Hou Z X, et al. Advanced Materials Research, 2013, 652-654,290.
11 Corbel G,Mestiri S, Lacorre P. Solid State Sciences,2005,7(10),1216.
12 Zhao H, Liu J, Li X W, et al. Journal of the American Ceramic Society, 2014, 97(9),2705.
13 Shen X M. Preparation and infrared emissivity of doped lanthanum manganese oxides. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2010(in Chinese).
申星梅. 掺杂型镧锰氧化物的制备及其红外发射率研究. 硕士学位论文, 南京航空航天大学, 2010.
14 Hui R, Zhu J, Lu W P, et al. Acta physica Sinica, 2004, 53 (1), 276(in Chinese).
惠荣, 朱骏, 卢网平,等. 物理学报, 2004, 53(1), 276.
15 Kang Z J, Yao Y H, Xu G H. Molecular Catalysis, 2004, 18 (6), 468(in Chinese).
康振晋, 姚艳红, 许桂花. 分子催化, 2004, 18(6),468.
16 Mu W N, Wang Q, Wang L X, et al. Journal of Chongqing University of Technology (Natural Science), 2021, 5(1),93(in Chinese).
穆伟娜, 王琼, 王力霞, 等. 重庆理工大学学报(自然科学), 2021, 5(1),93.
17 Rezende M V S, Valerio M E G, Jackson R A. Optical Materials, 2011, 34(1), 109.
18 Wang D, Han M, Li M, et al. Materials Letters, 2016, 183, 223.
19 Bhat I, Husain S, Khan W, et al. Materials Research Bulletin, 2013, 48(11), 4506.
20 Zhang Y, Wen D. Materials Chemistry & Physics, 2012, 131(3), 575.
21 El-Sheikh S M, Rashad M M. Journal of Alloys & Compounds, 2010, 496, 723.
22 Turquet P. Revue Internationale de Sécuritésociale, 2012, 65(1), 33.
23 Zhu J F, Shi P. Ceramics International, 2016, 42(4), 5250.
24 Parolo M E,Savini M C, Loewy R M. Journal of Environmental Management, 2017, 196, 316.
25 Han Z, Liu J, Li X W, et al. Journal of the American Ceramic Society, 2014, 97(9), 2705.
26 Chang M, Sheng Y, Song Y, et al. RSC Advances,2016,6(57),52113.
[1] 李培, 秦亮, 何红, 张亚军. 含SiO2/SiC可昼夜降温辐射冷却膜的制备与实验研究[J]. 材料导报, 2021, 35(14): 14185-14189.
[2] 米海娜, 于建芳, 王哲, 张涛, 郭继然, 王喜明. 具有保健功效木材的制备及其特性研究进展[J]. 材料导报, 2021, 35(11): 11215-11221.
[3] 李晓白, 张雷鹏, 徐高平, 王博, 任子琛, 李垚. 基于PANI薄膜和Li+电解质的高光学调节性、循环稳定性的红外可变发射率器件[J]. 材料导报, 2021, 35(10): 10171-10175.
[4] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed