Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10171-10175    https://doi.org/10.11896/cldb.20050035
  高分子与聚合物基复合材料 |
基于PANI薄膜和Li+电解质的高光学调节性、循环稳定性的红外可变发射率器件
李晓白1,2, 张雷鹏2, 徐高平2, 王博2, 任子琛2, 李垚2
1 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
2 哈尔滨工业大学复合材料与结构研究所,哈尔滨 150001
Highly Optically Adjustable, Cyclically Stable Infrared Variable Emittance Devices Based on PANI Films and Li+ Electrolytes
LI Xiaobai1,2, ZHANG Leipeng2, XU Gaoping2, WANG Bo2, REN Zichen2, LI Yao2
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2 Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 3678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于电致变色聚苯胺(PANI)薄膜的红外可变发射率器件(IR-VED)在航天器智能热控等领域中具有广阔的应用前景。目前一些研究通过优化PANI薄膜的性能获得了具有优异发射率调节能力的IR-VED。电解质作为器件的重要组成部分也直接影响其性能。然而,关于电解质对IR-VED性能影响的研究少有报道,尤其是对IR调节性能的影响。为了获得高性能的器件,研究了PANI膜在三种常用Li+电解质中循环时的电化学行为和光学调节性能。结果表明,不同电解质不仅对PANI的氧化还原行为、响应速率具有很大影响,对其IR发射率调节能力也有显著影响。基于优选的锂盐,制备了具有良好导电性能和机械完整性的电解质膜用于IR-VED组装。所制备的柔性IR-VED具有快速的响应(~10 s)。此外,该器件在2.5~25 μm、3~5 μm和8~14 μm的波长范围内分别实现了0.39、0.36和0.46的高IR发射率变化。更重要的是,IR-VED在经过2 000次电化学循环后显示出卓越的IR调节稳定性,表明该器件在动态IR调节领域中有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓白
张雷鹏
徐高平
王博
任子琛
李垚
关键词:  红外可变发射率  聚苯胺  电解质  循环稳定性    
Abstract: The infrared variable emittance devices (IR-VEDs) based on electrochromic polyaniline (PANI) films have attracted increasing interest because of their promising applications in spacecraft intelligent thermal control. Electrolyte as an essential part of the PANI-based IR-VEDs directly affects their properties. However, few studies have focused on the effects of electrolytes on device performance, especially IR adjustment ability. Herein, in order to obtain high-performance IR-VED, the electrochemical behaviors and IR tunability of PANI films when cycling in three commonly used lithium salt electrolytes were investigated. It had been demonstrated that PANI films exhibited significantly different redox beha-viors, response times, and IR modulation ability in these electrolytes. Further, an electrolyte membrane with good ionic conductivity and mechanical integrity was prepared for IR-VED fabrication based on a preferable lithium salt. The resultant flexible IR-VED exhibited fast responses of about 10 s. In addition, high IR emittance changes of 0.39, 0.36, and 0.46 in the wavelength ranges of 2.5—25 μm, 3—5 μm, and 8—14 μm were achieved by the device. More importantly, the IR-VED showed superior IR adjustment stability after 2 000 electrochemical cycles, indicating pro-mising applications in dynamic IR regulation field.
Key words:  infrared variable emittance    polyaniline    electrolyte    cyclic stability
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TQ150  
基金资助: 科工局项目;中国博士后科学基金(2018M641824)
通讯作者:  yaoli@hit.edu.cn   
作者简介:  李晓白,2017年6月毕业于吉林大学,获得高分子化学与物理专业博士学位。同年,加入哈尔滨工业大学,在李垚教授的指导下从事博士后研究,研究方向为电致变发射率器件用电解质材料。
李垚教授,2000年7月毕业于哈尔滨工业大学,获得博士学位。同年在哈尔滨工业大学复合材料与结构研究所工作至今,主要从事功能复合材料研究。
引用本文:    
李晓白, 张雷鹏, 徐高平, 王博, 任子琛, 李垚. 基于PANI薄膜和Li+电解质的高光学调节性、循环稳定性的红外可变发射率器件[J]. 材料导报, 2021, 35(10): 10171-10175.
LI Xiaobai, ZHANG Leipeng, XU Gaoping, WANG Bo, REN Zichen, LI Yao. Highly Optically Adjustable, Cyclically Stable Infrared Variable Emittance Devices Based on PANI Films and Li+ Electrolytes. Materials Reports, 2021, 35(10): 10171-10175.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050035  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10171
1 Lang F, Wang H, Zhang S, et al. International Journal of Thermophy-sics, 2017, 39(1), 6.
2 Zhou K, Wang H, Jiu J, et al. Chemical Engineering Journal, 2018, 345, 290.
3 Deepa M, Awadhia A, Bhandari S. Physical Chemistry Chemical Physics, 2009, 11(27), 5674.
4 ćirić-Marjanović G. Synthetic Metals, 2013, 177, 1.
5 Chandrasekhar P, Zay B J, Birur G C, et al. Advanced Functional Materials, 2002, 12(2), 95.
6 Zay B J, Chandrasekhar P, Lawrence D, et al. Journal of Applied Polymer Science, 2014, 131, 40850.
7 Li H, Xie K, Pan Y, et al. Synthetic Metals, 2009, 159(13), 1386.
8 Li X, Zhang L, Wang B, et al. Electrochimica Acta, 2020, 332, 135357.
9 Xu G, Zhang L, Wang B, et al. Solar Energy Materials and Solar Cells, 2020, 208, 110356.
10 Zhang L, Wang B, Li X, et al. Journal of Materials Chemistry C, 2019, 7, 9878.
11 Petroffe G, Beouch L, Cantin S, et al. Solar Energy Materials and Solar Cells, 2018, 177, 23.
12 Zhang L, Li D, Li X, et al. Dyes and Pigments, 2019, 170, 107570.
13 Topart P, Hourquebie P. Thin Solid Films, 1999, 352, 243.
14 Li H, Xie K, Pan Y, et al. Synthetic Metals, 2012, 162(1-2), 22.
15 Wu S, Jia C, Fu X, et al. Electrochimica Acta, 2013, 88, 322.
16 Wang B, Zhang L, Xu G, et al. Materials Chemistry and Physics, 2020, 248, 122866.
17 Tian Y, Dou S, Zhang X, et al. Synthetic Metals, 2017, 232, 111.
18 Ding J, Zhou D, Spinks G, et al. Chemistry of Materials, 2003, 15, 2392.
19 Lu W, Fadeev A G, Qi B. Science, 2002, 297, 983.
20 Tian Y, Zhang X, Dou S, et al. Solar Energy Materials and Solar Cells, 2017, 170, 120.
21 Demiryont H, ShannonIII K C. AIP Conference Proceedings, 2007, 880, 51.
22 Bergeron B V, White K C, Boehme J L, et al. Journal of Physical Che-mistry C, 2008, 112, 832.
23 Li X, Ma H, Wang P, et al. ACS Applied Materials & Interfaces, 2019, 11(34), 30735.
24 Paterno L G, Mattoso L H C. Journal of Applied Polymer Science, 2002, 83, 1309.
25 Kababya S, Appel M, Haba Y, et al. Macromolecules, 1999, 32, 5357.
26 Maranhão S L D A, Torresi R M. Electrochimica Acta, 1999, 44, 1879.
[1] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[2] 陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
[3] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[4] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[5] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[6] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[7] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[8] 罗志虹, 冀晨皓, 朱广彬, 李富杰, 周立, 罗鲲. 提高锂电极稳定性的方法及其在锂氧电池中的应用[J]. 材料导报, 2020, 34(19): 19067-19074.
[9] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[10] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[11] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[12] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[13] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[14] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[15] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed