Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19067-19074    https://doi.org/10.11896/cldb.19050012
  无机非金属及其复合材料 |
提高锂电极稳定性的方法及其在锂氧电池中的应用
罗志虹1, 冀晨皓1, 朱广彬1, 李富杰1, 周立1, 罗鲲2
1 桂林理工大学材料科学与工程学院,桂林 541004
2 常州大学材料科学与工程学院,常州 213164
Research Progress on Methods for Improving the Stability of Li Metal and the
Application in Li-O2 Batteries
LUO Zhihong1, JI Chenhao1, ZHU Guangbin1, LI Fujie1, ZHOU Li1, LUO Kun2
1 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
2 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
下载:  全 文 ( PDF ) ( 6289KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以金属锂为负极的二次电池具有高的能量密度(3 860 mAh/g),被誉为电池设计制造业的“圣杯”。但是由于金属锂与电解液反应形成的固态电解质(SEI)组成和结构不均匀、稳定性较差,使得在电池循环过程中,金属锂的沉积和析出伴随着枝晶与“死锂”的生成以及体积膨胀,容易造成电池短路、循环稳定性差、能量效率低等问题。此外,在具有高能量密度的锂氧电池中,锂负极还面临着与正极交互作用(如与正极活性物质氧气、放电中间体分解电解液产生的水分等反应)带来的腐蚀问题。
本文对金属锂枝晶及腐蚀问题进行评述,涉及合金化锂负极、三维结构锂负极、表面处理、电解液成分、隔膜改性以及固态电解质等提高金属锂稳定性的方法。其具体包括锂与硅、锡、铝等金属形成的合金化电极;采用多孔金属(如镍、铜等)、多孔碳材料(如碳纳米管、石墨烯、碳纤维等)构筑三维结构电极及其亲锂性的改善方法;通过化学预处理、电化学预处理、抛光和制备保护膜等表面处理方式提高金属锂的稳定性;通过调整电解液溶剂、溶质、添加剂的成分或浓度等方法调控固态电解质的组成和结构,以增强其稳定性;采用高聚物和/或无机纳米材料的复合材料对传统电池隔膜进行改性以防止正负极交互作用;以及使用高锂离子电导率的固态电解质等。本文充分探讨了各种锂保护方法的基本原理,详细阐述了其改善金属锂稳定性的根本原因,阐明了各种锂保护手段对电池性能的影响及其存在的不足与相应的改进方法,并对锂电极保护在新型锂氧电池中的应用及前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗志虹
冀晨皓
朱广彬
李富杰
周立
罗鲲
关键词:  金属锂  固态电解质膜  枝晶  腐蚀  锂氧电池    
Abstract: The secondary batteries with lithium metal as negative electrode possess high energy density (3 860 mAh/g), which is considered as “Holy grail” for battery design and manufacture. However, due to the unstable SEI originated from the reaction between Li anode and electrolyte with uneven component and structure, the plating and stripping of Li is accompanied with the formation of dendrite and “dead Li” during the battery cycling process, as well as volume expansion, which lead to the short circuit of battery, poor cyclic performance and low energy efficiency. In addition, in the operation of Li-O2 batteries with extremely high energy, Li metal encounters corrosion caused by the interplay of positive and negative electrodes, for example, Li metal will react with O2 of cathode and water from discharge intermediates decomposing electrolyte.
This contribution focuses on the dendrite and corrosion issues of Li metal electrode, including Li alloy anode, three dimensional structural anode, surface treatment, electrolyte component, separator modification and solid state electrolyte. Typically, this paper reviews the following methods: the formation of Li alloy anode by Li metal reacting with Si, Sn, Al etc; employing porous metals and porous carbon materials as structural electrode, such as Ni, Cu, carbon nanotubes, graphene and carbon fibers etc, as well as providing pathways for improving the lithiophilicity; improving the stability of Li anode by surface treatment, such as chemical pretreatment, electrochemical pretreatment, polishing and coating artificial film; adjusting the component and concentration of solvent, salt, additives of electrolyte to regulate the component and structure of SEI and enhance its stability; modifying the conventional separator with composites of polymer and/or inorganic nanoparticles to prevent the interplay between anode and cathode; adopting solid state electrolyte with high Li+ conductivity. The mechanism of various methods is discussed adequately, the primary reason for the enhancement of Li anode stability is illustrated in detail; the effects of these methods on the battery performance, as well as the merits and demerits are clarified. Moreover, a comprehensive overview on the application and prospect of protective strategies in the new type Li-O2 batteries is presented.
Key words:  Li metal    solid electrolyte interface    dendrite    corrosion    Li-O2 batteries
                    发布日期:  2020-11-05
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51874051);广西自然科学基金(2018GXNSFAA281184;2019GXNSFAA245046)
通讯作者:  luokun@cczu.edu.cn   
作者简介:  罗志虹,桂林理工大学材料科学与工程学院,讲师,硕士研究生导师。于2014年获得华中科技大学博士学位。从事锂空气电池、超级电容器、燃料电池等的研究,取得了多项创新性成果,在Chem. Commun.J. Mater. Chem. A.ChemElectroChem等期刊发表学术论文20多篇。
冀晨皓,2018年毕业于太原工业学院,获得高分子材料与工程专业工学学士学位。现为桂林理工大学硕士研究生,在罗鲲教授和罗志虹博士的指导下进行研究。目前主要研究领域为新能源材料。
罗鲲,常州大学,教授,博士研究生导师,曾于2008—2018年在桂林理工大学任教。分别于2000年和2004年获得中国科学院材料科学与工程专业硕士学位和博士学位。从事新能源储能材料研究,已在Adv. Mater.Chem. Commun.Chem.Mater., 、J. Mater. Chem. A.等期刊发表研究论文100余篇。
引用本文:    
罗志虹, 冀晨皓, 朱广彬, 李富杰, 周立, 罗鲲. 提高锂电极稳定性的方法及其在锂氧电池中的应用[J]. 材料导报, 2020, 34(19): 19067-19074.
LUO Zhihong, JI Chenhao, ZHU Guangbin, LI Fujie, ZHOU Li, LUO Kun. Research Progress on Methods for Improving the Stability of Li Metal and the
Application in Li-O2 Batteries. Materials Reports, 2020, 34(19): 19067-19074.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050012  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19067
1 Guo Y P, Li H Q, Zhai T Y. Advanced Materials,2017,29,1700007.
2 Lin D C, Liu Y Y, Cui Y. Nature Nanotechnology,2017,12(3),194.
3 Lu J, Li L, Park J B, et al. Chemical Reviews,2014,114(11),5611.
4 Liao K M, Wu S C, Mu X W, et al. Advanced Materials,2018,30,1705711.
5 Cheng X B, Zhang Q. Progressin Chemistry,2018,30(1),51(in Chinese).
程新兵,张强.化学进展,2018,30(1),51.
6 Hassoun J, Jung H G, Lee D J, et al. Nano Letters,2012,12(11),5775.
7 Guo Z, Dong X L, Wang Y, et al. Chemical Communications,2015,51(4),676.
8 Zhao J, Zhou G, Yan K, et al. Nature Nanotechnology,2017,12,993.
9 Yang C P, Yin Y X, Zhang S F, et al. Nature Communications,2015,6,8058.
10 Lu L L, Zhang Y, Pan Z, et al. Energy Storage Materials,2017,9,31.
11 Wang S H, Yin Y X, Zuo T T, et al. Advanced Materials,2017,29,1703729.
12 Wang J Q, Liu J X, Cai Y C. ChemElectroChem,2018,5(13),1702.
13 Zhao Y, Sun Q, Li X, et al. Nano Energy,2018,43,368.
14 Kim J S, Kim D W, Jung H T, et al. Chemistry of Materials,2015,27(8),2780.
15 Salvatierra R V, Lopez-Silva G A, Jalilov A S, et al. Advanced Materials,2018,30(50),9.
16 Liu S, Liu S, Li Q, et al. Joule,2017,2(1),184.
17 Liu L, Yin Y X, Li J Y, et al. Joule,2017,1(3),563.
18 Huang S, Lu T, Najafabadi H S, et al. Nano Energy,2017,38,504.
19 Jin X, Wang J, Lee H R, et al. Science Advances,2018,4(7),5168.
20 Sun Z W, Jin S, Jin H C, et al. Advanced Materials,2018,30(32),1800884.
21 Yang C, Yao Y, He S, et al. Advanced Materials,2017,29(38),1702714.
22 Zhang R, Chen X, Shen X, et al. Joule,2018,2(4),764.
23 Jun P, Jiachen L, Zihan S, et al. Advanced Functional Materials,2018,28(41),1804133.
24 Wang L, Zhu X, Guan Y, et al. Energy Storage Materials,2018,11,191.
25 Fan L, Li S, Liu L, et al. Advanced Energy Materials,2018,8(15),1802350.
26 Zhang H, Liao X B, Guan Y P, et al. Nature Communications,2018,9,3729.
27 Zhang R, Chen X R, Chen X, et al. Angewandte Chemie-International Edition,2017,56(27),7764.
28 Huang G, Han J H, Zhang F, et al. Advanced Materials,2019,31(2),7.
29 Liu K, Li Z H, Xie W F, et al. Energy Storage Materials,2018,15,308.
30 Liu Y M, Qin X Y, Zhang S Q, et al. Energy Storage Materials,2019,18,320.
31 Guo Z, Wang F, Li Z, et al. Journal of Materials Chemistry A,2018,(44),22096.
32 Pan R, Sun R, Wang Z, et al. Nano Energy,2019,55,316.
33 Zhang Y J, Wang W, Tang H, et al. Journal of Power Sources,2015,277,304.
34 Li Y, Li Y, Sun Y, et al. Nano Letters,2017,17(8),5171.
35 Zhao J, Liao L, Shi F, et al. Journal of the American Chemical Society,2017,139(33),11550.
36 Lang J, Long Y, Qu J, et al. Energy Storage Materials,2019,16,85.
37 Ma L, Kim M S, Archer L A. Chemistry of Materials,2017,29(10),4181.
38 Liu B, Wu X, Tao J, et al. Advanced Energy Materials,2018,8(11),1702340.
39 Asadi M, Sayahpour B, Abbasi P, et al. Nature,2018,555(7697),502.
40 Luo Z, Zhu G, Guo L, et al. Chemical Communications,2019,55(14),2094.
41 Tang W, Yin X, Chen Z, et al. Energy Storage Materials,2018,14,289.
42 Gu Y, Wang W W, Li Y J, et al. Nature Communications,2018,9,1339.
43 Liao K M, Wu S C, Mu X W, et al. Advanced Materials,2018,30(36),8.
44 Lee H, Lee D J, Kim Y J, et al. Journal of Power Sources,2015,284,103.
45 Lee D J, Lee H, Song J, et al. Electrochemistry Communications,2014,40,45.
46 Lee D J, Lee H, Kim Y J, et al. Advanced Materials,2016,28(5),857.
47 Kim J H, Woo H S, Kim W K, et al. ACS Applied Materials Interfaces,2016,8(47),32300.
48 Amici J, Alidoost M, Caldera F, et al. ChemElectroChem,2018,5(12),1599.
49 Xu J J, Liu Q C, Yu Y, et al. Advanced Materials,2017,29(24),1606552.
50 Zhang Y J, Liu X Y, Bai W Q, et al. Journal of Power Sources,2014,43,266.
51 Wang L, Wang Q, Jia W, et al. Journal of Power Sources,2017,342,175.
52 Liu Y, Tzeng Y K, Lin D, et al. Joule,2018,2(8),1595.
53 Aurbach D. Journal of Power Sources,2000,89(2),206.
54 Aurbach D, Ein-Ely Y, Zaban A. Journal of the Electrochemical Society,1994,141(1),L1.
55 Aurbach D, Daroux M, Faguy P, et al. Journal of The Electrochemical Society,1987,134(7),1611.
56 Aurbach D, Zaban A, Schechter A, et al. Journal of the Electrochemical Society,1995,142(9),2873.
57 Zhang X, Zhang Q M, Wang X G, et al. Angewandte Chemie-Internatio-nal Edition,2018,57(39),12814.
58 Giordani V, Walker W, Vyacheslav S, et al. Journal of The Electrochemical Society,2013,160(9),A1544.
59 Uddin J, Vyacheslav S B, Vincent G, et al. The Journal Physical Che-mistry Letters,2013,4(21),3760.
60 Xin X, Ito K, Kubo Y. ACS Applied Materials & Interfaces,2017,9(31),25976.
61 Xin X, Ito K, Dutta A, et al. Angewandte Chemie-International Edition,2018,57(40),13206.
62 Cheng X B, Yan C, Peng H J, et al. Energy Storage Materials,2018,10,199.
63 Kanamura K, Shiraishi S, Takehara Z. Journal of the Electrochemical Society,1994,141(9),L108.
64 Kanamura K, Shiraishi S, Takehara Z. Journal of the Electrochemical Society,1996,143(7),2187.
65 Heine J, Hilbig P, Qi X, et al. Journal of the Electrochemical Society,2015,162(6),A1094.
66 Liu Q C, Xu J J, Yuan S, et al. Advanced Materials,2015,27(40),6089.
67 Yuan Y, Feng W, Ying B, et al. Energy Storage Materials,2019,16,411.
68 Yoo E, Zhou H S. ACS Applied Materials & Interfaces,2017,9(25),21307.
69 Choudhury S, Archer L A. Advanced Electronic Materials,2016,2(2),1500246.
70 Peng Z, Zhao N, Zhang Z G, et al. Nano Energy,2017,39,662.
71 Hu Z L, Zhang S, Dong S M, et al. Chemistry of Materials,2018,30(12),4039.
72 Zhang T, Liao K, He P, et al. Energy & Environmental Science,2016,9(3),1024.
73 Ye H, Yin Y X, Zhang S F, et al. Nano Energy,2017,36,411.
74 Chu F L, Hu J L, Tian J, et al. Acs Applied Materials & Interfaces,2018,10(15),12678.
75 Tu Z Y, Choudhury S, Zachman M J, et al. Nature Energy,2018,3(4),310.
76 Huang Z M, Ren J, Zhang W, et al. Advanced Materials,2018,30(39),6.
77 Ding F, Xu W, Graff G L, et al. Journal of the American Chemical Society,2013,135(11),4450.
78 Zhang Y H, Qian J F, Xu W, et al. Nano Letters,2014,14(12),6889.
79 Lee C K, Park Y J. Acs Applied Materials & Interfaces,2016,8(13),8561.
80 Guo Y, Yan O, Li D, et al. Energy Storage Materials,2019,16,203.
81 Bai S, Sun Y, Yi J, et al. Joule,2018,2,2117.
82 Qian J F, Adams B D, Zheng J M, et al. Advanced Functional Materials,2016,26(39),7094
83 Qian J, Henderson W A, Xu W, et al. Nature Communications,2015,6,6362.
84 Liu B, Xu W, Yan P F, et al. Advanced Functional Materials,2016,26(4),605.
85 Liu B, Wu X, Yan P, et al. Advanced Energy Materials,2017,7(14),1602605.
86 Wang J, Yamada Y, Sodeyama K. Nature Communications,2016,7,12032.
87 Chen S R, Zheng J M, Mei D H, et al. Advanced Materials,2018,30(21),7.
88 Kim J S, Yoo D J, Min J, et al. Chemnanomat,2015,1(4),240.
89 Kim B G, Kim J S, Min J, et al. Advanced Functional Materials,2016,26(11),1747.
90 Yin Y B, Yang X Y, Chang Z W, et al. Advanced Materials,2018,30(1),7.
91 Wu C L M, Li T R, Liao C B, et al. Journal of Materials Chemistry A,2017,5(25),12782.
92 Luo K, Zhu G, Zhao Y, et al. Journal of Materials Chemistry A,2018,6(17),7770.
93 Mozhzhukhina N, Leo L P M D, Calvo E J. Journal of Physical Chemistry C,2013,117(36),18375.
94 Ryan K R, Trahey L. Journal of Physical Chemistry C,2014,116(37),19724.
95 Freunberger S A, Yuhui C, Zhangquan P, et al. Journal of the American Chemical Society,2011,133(20),8040.
96 Nasybulin E, Xu W, Engelhard M H, et al. Physical Chemistry,2013,117(6),2635.
97 Kamaya N, Homma K, Yamakawa Y, et al. Nature Materials,2011,10(9),682.
98 Kato Y, Hori S, Saito T, et al. Nature Energy,2016,1(4),16030.
99 Wei L, Lee S W, Lin D, et al. Nature Energy,2017,2(5),17035.
100 Lin D, Yuen P Y, Liu Y, et al. Advanced Materials,2018,30(32),1802661.
[1] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[2] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[3] 王鹏, 张卫刚, 孙旭东. 锆在硫酸提浓工艺中的腐蚀研究[J]. 材料导报, 2020, 34(Z1): 385-389.
[4] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[5] 魏乔苑, 李跃忠, 赵毛毛, 冉小兵. 水环境对控制棒驱动机构Ω焊缝母材应力腐蚀的影响[J]. 材料导报, 2020, 34(Z1): 462-465.
[6] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[7] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[8] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[9] 陈钢, 鞠娜, 雷玉成, 王丹, 朱强, 李天庆, 陈璐. 430不锈钢在550℃流动Pb-Bi合金中的腐蚀行为[J]. 材料导报, 2020, 34(6): 6105-6108.
[10] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[11] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[12] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[13] 黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
[14] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[15] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed