Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21060182-9    https://doi.org/10.11896/cldb.21060182
  无机非金属及其复合材料 |
吸透一体超材料研究进展
宋友婷1, 黄聪颖2, 封哲宇1, 时胜圆1, 李敏华1, 董建峰1
1 宁波大学信息科学与工程学院,浙江 宁波 315211
2 宁波技师学院基础部,浙江 宁波 315032
Research Progress in Integrated Metamaterial with Functionalities of Absorption and Transmission
SONG Youting1, HUANG Congying2, FENG Zheyu1, SHI Shengyuan1, LI Minhua1, DONG Jianfeng1
1 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, Zhejiang, China
2 Department of Basic Education, Ningbo Technical College, Ningbo 315032, Zhejiang, China
下载:  全 文 ( PDF ) ( 8261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不同于传统吸波材料或透波材料,吸透一体材料可同时具备带内透波和带外吸波的特性,在降低目标雷达散射截面和抑制电磁干扰中具有重要的意义。传统纳米材料或陶瓷材料很难同时实现这两个复合功能,且缺乏谐振频率的调控方法。随着超材料的飞速发展,基于人工电磁微结构实现吸透一体的新型复合材料,又称rasorber,近些年成为了研究热点。由于在设计中,既要考虑带内透明,又要兼顾带外吸收,rasorber仍然存在透波品质因子Q值低、吸波带宽窄、频率可调性差等缺点。本文根据吸收带与通带的相对位置,介绍了低频侧吸收(A-T)、高频侧吸收(T-A)、单通带双侧吸收(A-T-A)以及双通带(T-A-T)四种吸透超材料,对比分析了各种模型的谐振原理、存在的问题以及未来发展方向。这种吸透一体化超材料的设计开辟了通信与隐身一体化研究的新思路,其与新型功能材料(如半导体材料、超导材料、相变材料、液晶材料等)相结合,具有极大的实际应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋友婷
黄聪颖
封哲宇
时胜圆
李敏华
董建峰
关键词:  超材料  吸透一体  吸波材料  透波材料  rasorber    
Abstract: Unlike traditional wave-absorbing and wave-transparent materials, integrated materials with functionalities of absorption and transmission exhibit in-band transmission and out-band absorption properties. These properties are important in reducing the target radar cross-section and suppressing electromagnetic interference. Traditional nanomaterials or ceramic materials cannot simultaneously achieve these two composite functions. They also lack the methods required for controlling the resonant frequency. With the rapid development of metamaterials, a new type of composite material with artificial electromagnetic microstructures to achieve absorption and transmission, also known as rasorber, has become a research hotspot in the recent years. However, because both in-band transparency and out-of-band absorption must be considered in their design, rasorbers exhibit some shortcomings, such as low Q value of transmission, narrow absorption bandwidth and poor frequency adjustability. In this paper, we introduce four kinds of rasorbers according to the relative locations of the transmission and absorption bands: absorption band below the transmission band (A-T), absorption band above the transmission band (T-A), transmission band between two absorption bands (A-T-A) and dual transmission bands (T-A-T). We also analyze and compare the resonant principles, remaining problems and future development directions of these rasorbers. Metamaterials with functionalities of absorption and transmission open up new possibilities for integrated communication and stealth. They present great application value when combined with other new functional materials, such as semiconductor materials, superconducting materials, phase change materials and liquid crystal materials.
Key words:  metamaterials    integration of absorption and transmission    wave-absorbing material    wave-transparent material    rasorber
发布日期:  2022-06-09
ZTFLH:  TB34  
基金资助: 国家自然科学基金(62175119;61871242);宁波大学王宽诚幸福基金
通讯作者:  liminhua@nbu.edu.cn   
作者简介:  宋友婷,2019年6月毕业于安徽师范大学,获得工学学士学位。现为宁波大学信息科学与工程学院研究生,主要研究吸透一体超材料。
李敏华,宁波大学信息科学与工程学院副教授、硕士研究生导师。2007年华中师范大学物理学专业本科毕业,2013年华中师范大学无线电物理专业博士毕业,2018年英国南安普顿大学光电子中心访问学者。目前主要从事碳纳米管、石墨烯等复合功能材料以及基于电磁超介质的微波/光器件的研究。主持和参与多项国家自然科学基金、省自然科学基金,在Optics Express、Applied Physics Letters等期刊发表SCI/EI论文20余篇,授权发明专利5项。
引用本文:    
宋友婷, 黄聪颖, 封哲宇, 时胜圆, 李敏华, 董建峰. 吸透一体超材料研究进展[J]. 材料导报, 2022, 36(11): 21060182-9.
SONG Youting, HUANG Congying, FENG Zheyu, SHI Shengyuan, LI Minhua, DONG Jianfeng. Research Progress in Integrated Metamaterial with Functionalities of Absorption and Transmission. Materials Reports, 2022, 36(11): 21060182-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060182  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21060182
1 Zhu C Y. Study on the preparation and properties of wave-transparent materials for 3D printing. Master's Thesis, National University of Defense Technology, China, 2017(in Chinese).
朱晨颖. 用于3D打印的透波材料制备及性能研究. 硕士学位论文, 国防科技大学, 2017.
2 Zhou Y. Study of high temperature complex permittivity measurement of transparent materials by stripline resonator cavity. Ph.D. Thesis, University of Electronic Science and Technology of China, China, 2011(in Chinese).
周杨. 带状线法透波材料高温介电性能测试技术研究. 博士学位论文, 电子科技大学, 2011.
3 Zhao L Z, Hu S J, Li W S, et al. Modern Defense Technology, 2007, 35(1), 27(in Chinese).
赵灵智, 胡社军, 李伟善, 等. 现代防御技术, 2007, 35(1), 27.
4 Kong J, Gao H, Li Y, et al. Materials Reports A: Review Papers, 2020, 34(5), 9055(in Chinese).
孔静, 高鸿, 李岩, 等. 材料导报:综述篇, 2020, 34(5), 9055.
5 Arceneaux W S, Akins R D, May W B. U S patent application, US5400043, 1995.
6 Pendry J B, Holden A J, Robbins D J, et al. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11), 2075.
7 Rashid A k, Shen Z X, Li B. IEEE Transactions on Antennas and Propagation, 2012, 60(10), 4661.
8 Wang D S, Che W Q, Chang Y M, et al. IET Microwaves Antennas & Propagation, 2014, 8(3), 186.
9 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100(20), 207402.
10 Li M H, Guo L Y, Dong J F, et al. Journal of Physics D Applied Physics, 2014, 47(18), 185102.
11 Wang L L, Huang X J, Li M H, et al. Optics Express, 2019, 27(18), 25983.
12 Costa F, Monorchio A. IEEE Transactions on Antennas and Propagation, 2012, 60(6), 2740.
13 Shang Y P, Shen Z X, Xiao S Q. IEEE Transactions on Antennas and Propagation, 2014, 62(11), 5581.
14 Shen Z X, Wang J, Li B. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(10), 3087.
15 Deng T W, Yu Y F, Shen Z X, et al. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(1), 108.
16 Wang Y H, Wang M, Shen Z X, et al. IEEE Access, 2021,9, 22317.
17 Chen Q, Chen L, Bai J J, et al. Electronics Letters, 2015, 51(12), 885.
18 Huang H, Shen Z X. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 3212.
19 Guo M, Chen Q, Bai T, et al. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5), 846.
20 Li B, Shen Z X. IEEE Transactions on Antennas and Propagation, 2014, 62(12), 6536.
21 Yu Y F, Shen Z X, Deng T W, et al. IEEE Transactions on Antennas and Propagation, 2017, 65(8), 4363.
22 Yu Y F, Luo G Q, Yu W L, et al. IEEE Transactions on Antennas and Propagation, 2020, 68(11), 7694.
23 Luo G Q, Yu W L, Yu Y F. Journal of Microwaves, 2020, 36(1), 7(in Chinese).
罗国清, 俞伟良, 俞钰峰. 微波学报, 2020, 36(1), 7.
24 Omar A A, Huang H, Shen Z X. IEEE Antennas and Propagation Magazine, 2020, 62(4), 62.
25 Pozar D M. Microwave engineering, Pergamon Press,UK,1998,pp.52.
26 Chen Q, Sang D, Guo M, et al. IEEE Transactions on Antennas and Propagation, 2018, 66(8), 4105.
27 Wang Z F, Zeng Q S, Fu J H, et al. IEEE Access, 2018, 6, 31367.
28 Chen Q, Yang S L, Bai J J, et al. IEEE Transactions on Antennas and Propagation, 2017, 65(9), 4897.
29 Chen Q, Guo M, Sun Z S,et al. AEU-International Journal of Electronics and Communications, 2018, 96, 178.
30 Chen Q, Sang D, Guo M, et al. IEEE Transactions on Antennas and Propagation, 2019, 67(2), 1045.
31 Sheng X J, Gao X, Liu N. Journal of Physics D Applied Physics, 2020, 53(9), 09LT01.
32 Wang Z F, Fu J H, Zeng Q S, et al. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7), 1443.
33 Tu H, Liu P G, Huang J J, et al. In: IEEE 2017 International Sympo-sium on Electromagnetic Compatibility-EMC EUROPE.Angers,2017,pp.1.
34 Yu W L, Luo G Q, Yu Y F, et al. IET Microwaves Antennas & Propagation, 2019, 13(11), 1777.
35 Chen Q, Bai J J, Chen L, et al. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 80.
36 Yu Y F, Luo G Q, Liu Q, et al. IEEE Access, 2019, 7, 2520.
37 Yu W L, Luo G Q, Yu Y F, et al. IEEE Antennas and Wireless Propagation Letters, 2019, 18(8), 1701.
38 Bakshi S C, Mitra D, Ghosh S. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1), 29.
39 Xiu X, Che W Q, Han Y, et al. IEEE Antennas and Wireless Propagation Letters, 2018, 17(6), 1002.
40 Xiu X, Che W Q, Yang W C, et al. IEEE Antennas and Wireless Propagation Letters, 2020, 19(2), 223.
41 Guo Q X, Li Z R, Su J X, et al. IEEE Antennas and Wireless Propagation Letters, 2019, 18(5), 961.
42 Qu M J, Sun S Y, Deng L, et al. IEEE Access, 2019, 7, 3704.
43 Xia J, Wei J F, Liu Y T, et al. IEEE Transactions on Antennas and Propagation, 2020, 68(7), 5718.
44 Han Y, Zhu L, Chang Y M, et al. IEEE Transactions on Antennas and Propagation, 2018, 66(12), 7449.
45 Wang L L, Liu S B, Kong X K,et al. IEEE Antennas and Wireless Propagation Letters, 2020, 19(2), 337.
46 Qu M J, Li S F. Results in Physics, 2019, 14, 102172.
47 Jia K, Wang D H, Li K X, et al. Materials Reports A: Review Papers, 2019, 33(5), 805(in Chinese).
贾琨, 王东红, 李克训, 等. 材料导报:综述篇, 2019, 33(5), 805.
48 Guo M, Chen Q, Sun Z S, et al. IEEE Antennas and Wireless Propagation Letters, 2019, 18(5), 841.
49 Guo M, Chen Q, Sang D, et al. IEEE Antennas and Wireless Propagation Letters, 2020, 19(1), 148.
50 Zhang X M, Wu W W, Huang J J, et al. IEEE Access, 2019, 7, 139795.
51 Jia Y T, Wu A Q, Liu Y,et al. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5), 831.
[1] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[2] 穆武第, 许永平, 盛德军. 尖锥型结构宽频吸波材料设计[J]. 材料导报, 2021, 35(z2): 115-117.
[3] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[4] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[5] 魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
[6] 孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
[7] 夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
[8] 刘凡, 赵晓明. 聚噻吩及其衍生物PEDOT在吸波领域的应用现状[J]. 材料导报, 2020, 34(Z1): 507-510.
[9] 方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
[10] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[11] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[12] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[13] 赵亚娟, 李宝毅, 马晨, 王东红, 王富生. 基于超材料的多频段微带滤波器[J]. 材料导报, 2019, 33(Z2): 70-72.
[14] 李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报, 2019, 33(Z2): 73-77.
[15] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed