Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22050146-6    https://doi.org/10.11896/cldb.22050146
  金属与金属基复合材料 |
基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究
张明山1, 田亚强1, 郑小平1, 张源1, 王俊升2,3,*, 陈连生1,*
1 华北理工大学教育部现代冶金技术重点实验室,河北 唐山 063210
2 北京理工大学材料学院,北京 100081
3 北京理工大学前沿交叉科学研究院,北京 100081
Optimization of Heat Treatment Process of Al-Si-Cu-Mg Cast Alloy Based on CALPHAD Calculation
ZHANG Mingshan1, TIAN Yaqiang1, ZHENG Xiaoping1, ZHANG Yuan1, WANG Junsheng2,3,*, CHEN Liansheng1,*
1 Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, Hebei, China
2 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
3 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 18046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热处理工艺参数的优化在铸造Al-Si-Cu-Mg合金组织性能调控方面扮演着重要角色。本工作以铸造Al-Si-Cu-Mg合金为研究对象,利用热力学计算和实验相结合的方法对合金的热处理工艺参数进行优化设计。热力学计算和差示扫描量热法(DSC)结果表明,Al-Si-Cu-Mg合金低熔点共晶相Al2Cu相的形成温度是501 ℃,并且通过热力学软件动力学模块计算可知Si、Mg和Cu元素在495 ℃固溶温度下5 h内能够达到均匀化扩散。随着固溶温度的升高和时间的延长,共晶硅发生熔断、球化和粗化长大现象。另外,显微硬度受固溶程度以及共晶硅形貌的影响,在固溶过程中随着固溶温度的升高和时间的延长先升高后降低。当固溶温度为495 ℃、固溶时间为12 h时,显微硬度达到最大值(70.8±1.0)HV,球状共晶硅的Feret直径为2.8 μm。在170 ℃下对合金进行时效处理时,合金的显微硬度逐渐升高,当时效时间为5 h时达到峰时效,其显微硬度达到(119.0±5.7)HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明山
田亚强
郑小平
张源
王俊升
陈连生
关键词:  铸造Al-Si-Cu-Mg合金  热处理工艺  热力学计算  共晶硅  显微硬度    
Abstract: The optimization of heat treatment process parameters plays an important role in the regulation of microstructure and properties of Al-Si-Cu-Mg cast alloy. In this work, the heat treatment process parameters of Al-Si-Cu-Mg cast alloy were optimized by the combination of thermodynamic calculation and experiment. The results of thermodynamic calculation and differential scanning calorimetry (DSC) show that the formation temperature of low melting point eutectic Al2Cu phase is 501 ℃, and the calculation of thermodynamic software dynamics module shows that Si, Mg and Cu elements reach homogenization diffusion within 5 h at 495 ℃. With the increase of solution temperature and time, eutectic Si gradually fragments, spheroidizes and coarsens. In addition, the microhardness is affected by the degree of solution heat treatment and the morphology of eutectic Si. During the solution heat treatment, the microhardness first increases and then decreases with the increase of solution temperature and time. When the solution temperature is 495 ℃ and the solution time is 12 h, the microhardness reaches the maximum value of (70.8±1.0)HV, and the Feret diameter of spherical eutectic Si is 2.8 μm. When the alloy is aged at 170 ℃, the microhardness of alloy increases gradually, and reaches the peak aging when the aging time is 5 h, and the microhardness reaches (119.0±5.7)HV.
Key words:  Al-Si-Cu-Mg cast alloy    heat treatment process    thermodynamic calculation    eutectic Si    microhardness
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TG146.2  
基金资助: 河北省自然科学基金青年基金(E2022209059;E2020209153);唐山市科技计划项目(22130217G)
通讯作者:  * 王俊升,北京理工大学前沿交叉科学研究院/材料学院教授、博士研究生导师。2002年7月、2005年7月和2009年1月分别于北京科技大学、北京科技大学和英国伦敦帝国理工学院获得学士、硕士和博士学位。长期从事集成计算材料工程研究,专注于航空轻质铝合金、镁合金设计、表征和应用的基础研究,在Additive Manufacturing、Corrosion Science、Materials Science and Engineering A、Scripta Materialia、Journal of Alloys and Compounds、Journal of Materials Science & Technology 等期刊发表学术论文50余篇。
陈连生,华北理工大学冶金与能源学院教授、博士研究生导师。1990年7月、1998年7月和2008年7月分别于河北理工学院、燕山大学和东北大学获得学士、硕士和博士学位。长期从事材料加工新技术与新工艺、高性能钢铁材料强韧化机理、金属基复合材料等方面的研究。在Materials Characterization、Journal of Alloys and Compounds、Acta Metallurgica Sinica (English Letters)、《金属学报》《材料导报》等期刊发表学术论文80余篇。junsheng.wang@bit.edu.cn;kyckfk@ncst.edu.cn   
作者简介:  张明山,华北理工大学冶金与能源学院讲师。2013年7月、2017年4月和2021年9月分别于陕西理工学院、华北理工大学和北京理工大学获得学士、硕士和博士学位。目前主要从事新型高强铸造铝合金设计与组织性能调控方面的研究,在Mate-rials Science and Engineering A、Journal of Alloys and Compounds、Calphad、Materials Today Communications、Materials Science and Technology等期刊发表学术论文6篇。
引用本文:    
张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
ZHANG Mingshan, TIAN Yaqiang, ZHENG Xiaoping, ZHANG Yuan, WANG Junsheng, CHEN Liansheng. Optimization of Heat Treatment Process of Al-Si-Cu-Mg Cast Alloy Based on CALPHAD Calculation. Materials Reports, 2023, 37(22): 22050146-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050146  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22050146
1 Lombardi A, Mu W, Ravindran C, et al. Materials Characterization, 2018, 141, 328.
2 Shi Q, Huo Y, Berman T, et al. Scripta Materialia, 2021, 190, 97.
3 Dash M, Makhlouf M. Journal of Light Metals, 2001, 1(4), 251.
4 Cheng W, Liu C Y, Huang H F, et al. Materials Characterization, 2021, 178, 111278.
5 Lados D A, Apelian D, Wang L. Metallurgical and Materials Transactions B, 2011, 42(1), 171.
6 Lin Y C, Luo S C, Huang J, et al. Materials Science and Engineering: A, 2018, 725, 530.
7 Li D Z. Acta Metallurgica Sinica, 2018, 54(2), 129 (in Chinese).
李殿中. 金属学报, 2018, 54(2), 129.
8 Sun W, Xue W, Zhang Y, et al. International Journal of Pavement Research and Technology, 2017, 11(2), 195.
9 Xie J X, Su Y J, Xue D Z, et al. Acta Metallurgica Sinica, 2021, 57(11), 1343 (in Chinese).
谢建新, 宿彦京, 薛德祯, 等. 金属学报, 2021, 57(11), 1343.
10 Ågren J. Current Opinion in Solid State and Materials Science, 1996, 1(3), 355.
11 Jung J G, Cho Y H, Lee J M, et al. Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 236.
12 Zhang M S, Liu K L, Han J Q, et al. Materials Today Communications, 2021, 26, 102055.
13 Hernandez-Sandoval J, Garza-Elizondo G H, Samuel A M, et al. Mate-rials & Design, 2014, 58, 89.
14 Tillová E, Chalupová M, Hurtalová L, et al. Acta Metallurgica Slovaca, 2013, 3, 196.
15 Gao Y X, Yi J Z, Lee P D, et al. Acta Materialia, 2004, 52, 5435.
16 Beroual S, Boumerzoug Z, Paillard B, et al. Journal of Alloys and Compounds, 2019, 784, 1026.
17 Zhao Y Z, Pan F S, P J. The Chjnese JournaI of Nonferrous Metals, 2010, 20(6), 1069 (in Chinese).
赵亚忠, 潘复生, 彭建. 中国有色金属学报, 2010, 20(6), 1069.
18 Li D X, Han M X, Zhang J, et al. Materials Reports, 2021, 35(9), 9003 (in Chinese).
李道秀, 韩梦霞, 张将, 等. 材料导报, 2021, 35(9), 9003.
19 Basavakumar K G, Mukunda P G, Chakraborty M. Materials Characte-rization, 2008, 59(3), 283.
20 Lin Y C, Luo S C, Huang J, et al. Materials Science & Engineering, A, 2018, 725, 530.
21 Vandersluis E, Ravindran C. Journal of Alloys and Compounds, 2020, 838, 155577.
22 Eduardo Spinelli J, Garcia A. Journal of Materials Science: Materials in Electronics, 2014, 25(1), 478.
23 Costa T A, Dias M, Gomes L G, et al. Journal of Alloys and Compounds, 2016, 683, 485.
24 Yang R X, Liu Z Y, Ying P Y, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(5), 1183.
25 Wang Y Q, Deng T Q, Chen Q, et al. Foundry Technology, 2010, 31(10), 1303 (in Chinese).
王元庆, 邓天泉, 陈强, 等. 铸造技术, 2010, 31(10), 1303.
26 Li R X, Li C X, Li R D. Foundry, 2006(10), 1015 (in Chinese).
李润霞, 李晨曦, 李荣德. 铸造, 2006(10), 1015.
[1] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[2] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[3] 房洪杰, 刘慧, 孙杰, 张倩, 余琨. 5xxx系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 22010082-10.
[4] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[5] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[6] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[7] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[8] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[9] 袁江杭, 曲兆明, 赵芳, 许宝才, 孙肖宁, 王庆国. 片形羰基铁粉热处理工艺及其吸波性能研究[J]. 材料导报, 2022, 36(18): 21040268-6.
[10] 刘闪光, 虞秀勇, 毛郭灵, 李大奎, 陆政, 高文理. 钇在亚共晶铝硅合金中的作用研究进展[J]. 材料导报, 2022, 36(15): 20110271-7.
[11] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[12] 欧黎明, 毛丰, 乔永枫, 高梦锞, 吴修德, 魏世忠. 稀土元素Eu和冷却速率对Al-7Si合金中共晶硅的影响[J]. 材料导报, 2021, 35(8): 8103-8107.
[13] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[14] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[15] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed