1 Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, Hebei, China 2 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China 3 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Abstract: The optimization of heat treatment process parameters plays an important role in the regulation of microstructure and properties of Al-Si-Cu-Mg cast alloy. In this work, the heat treatment process parameters of Al-Si-Cu-Mg cast alloy were optimized by the combination of thermodynamic calculation and experiment. The results of thermodynamic calculation and differential scanning calorimetry (DSC) show that the formation temperature of low melting point eutectic Al2Cu phase is 501 ℃, and the calculation of thermodynamic software dynamics module shows that Si, Mg and Cu elements reach homogenization diffusion within 5 h at 495 ℃. With the increase of solution temperature and time, eutectic Si gradually fragments, spheroidizes and coarsens. In addition, the microhardness is affected by the degree of solution heat treatment and the morphology of eutectic Si. During the solution heat treatment, the microhardness first increases and then decreases with the increase of solution temperature and time. When the solution temperature is 495 ℃ and the solution time is 12 h, the microhardness reaches the maximum value of (70.8±1.0)HV, and the Feret diameter of spherical eutectic Si is 2.8 μm. When the alloy is aged at 170 ℃, the microhardness of alloy increases gradually, and reaches the peak aging when the aging time is 5 h, and the microhardness reaches (119.0±5.7)HV.
通讯作者:
* 王俊升,北京理工大学前沿交叉科学研究院/材料学院教授、博士研究生导师。2002年7月、2005年7月和2009年1月分别于北京科技大学、北京科技大学和英国伦敦帝国理工学院获得学士、硕士和博士学位。长期从事集成计算材料工程研究,专注于航空轻质铝合金、镁合金设计、表征和应用的基础研究,在Additive Manufacturing、Corrosion Science、Materials Science and Engineering A、Scripta Materialia、Journal of Alloys and Compounds、Journal of Materials Science & Technology 等期刊发表学术论文50余篇。 陈连生,华北理工大学冶金与能源学院教授、博士研究生导师。1990年7月、1998年7月和2008年7月分别于河北理工学院、燕山大学和东北大学获得学士、硕士和博士学位。长期从事材料加工新技术与新工艺、高性能钢铁材料强韧化机理、金属基复合材料等方面的研究。在Materials Characterization、Journal of Alloys and Compounds、Acta Metallurgica Sinica (English Letters)、《金属学报》《材料导报》等期刊发表学术论文80余篇。junsheng.wang@bit.edu.cn;kyckfk@ncst.edu.cn
作者简介: 张明山,华北理工大学冶金与能源学院讲师。2013年7月、2017年4月和2021年9月分别于陕西理工学院、华北理工大学和北京理工大学获得学士、硕士和博士学位。目前主要从事新型高强铸造铝合金设计与组织性能调控方面的研究,在Mate-rials Science and Engineering A、Journal of Alloys and Compounds、Calphad、Materials Today Communications、Materials Science and Technology等期刊发表学术论文6篇。
引用本文:
张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
ZHANG Mingshan, TIAN Yaqiang, ZHENG Xiaoping, ZHANG Yuan, WANG Junsheng, CHEN Liansheng. Optimization of Heat Treatment Process of Al-Si-Cu-Mg Cast Alloy Based on CALPHAD Calculation. Materials Reports, 2023, 37(22): 22050146-6.
1 Lombardi A, Mu W, Ravindran C, et al. Materials Characterization, 2018, 141, 328. 2 Shi Q, Huo Y, Berman T, et al. Scripta Materialia, 2021, 190, 97. 3 Dash M, Makhlouf M. Journal of Light Metals, 2001, 1(4), 251. 4 Cheng W, Liu C Y, Huang H F, et al. Materials Characterization, 2021, 178, 111278. 5 Lados D A, Apelian D, Wang L. Metallurgical and Materials Transactions B, 2011, 42(1), 171. 6 Lin Y C, Luo S C, Huang J, et al. Materials Science and Engineering: A, 2018, 725, 530. 7 Li D Z. Acta Metallurgica Sinica, 2018, 54(2), 129 (in Chinese). 李殿中. 金属学报, 2018, 54(2), 129. 8 Sun W, Xue W, Zhang Y, et al. International Journal of Pavement Research and Technology, 2017, 11(2), 195. 9 Xie J X, Su Y J, Xue D Z, et al. Acta Metallurgica Sinica, 2021, 57(11), 1343 (in Chinese). 谢建新, 宿彦京, 薛德祯, 等. 金属学报, 2021, 57(11), 1343. 10 Ågren J. Current Opinion in Solid State and Materials Science, 1996, 1(3), 355. 11 Jung J G, Cho Y H, Lee J M, et al. Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 236. 12 Zhang M S, Liu K L, Han J Q, et al. Materials Today Communications, 2021, 26, 102055. 13 Hernandez-Sandoval J, Garza-Elizondo G H, Samuel A M, et al. Mate-rials & Design, 2014, 58, 89. 14 Tillová E, Chalupová M, Hurtalová L, et al. Acta Metallurgica Slovaca, 2013, 3, 196. 15 Gao Y X, Yi J Z, Lee P D, et al. Acta Materialia, 2004, 52, 5435. 16 Beroual S, Boumerzoug Z, Paillard B, et al. Journal of Alloys and Compounds, 2019, 784, 1026. 17 Zhao Y Z, Pan F S, P J. The Chjnese JournaI of Nonferrous Metals, 2010, 20(6), 1069 (in Chinese). 赵亚忠, 潘复生, 彭建. 中国有色金属学报, 2010, 20(6), 1069. 18 Li D X, Han M X, Zhang J, et al. Materials Reports, 2021, 35(9), 9003 (in Chinese). 李道秀, 韩梦霞, 张将, 等. 材料导报, 2021, 35(9), 9003. 19 Basavakumar K G, Mukunda P G, Chakraborty M. Materials Characte-rization, 2008, 59(3), 283. 20 Lin Y C, Luo S C, Huang J, et al. Materials Science & Engineering, A, 2018, 725, 530. 21 Vandersluis E, Ravindran C. Journal of Alloys and Compounds, 2020, 838, 155577. 22 Eduardo Spinelli J, Garcia A. Journal of Materials Science: Materials in Electronics, 2014, 25(1), 478. 23 Costa T A, Dias M, Gomes L G, et al. Journal of Alloys and Compounds, 2016, 683, 485. 24 Yang R X, Liu Z Y, Ying P Y, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(5), 1183. 25 Wang Y Q, Deng T Q, Chen Q, et al. Foundry Technology, 2010, 31(10), 1303 (in Chinese). 王元庆, 邓天泉, 陈强, 等. 铸造技术, 2010, 31(10), 1303. 26 Li R X, Li C X, Li R D. Foundry, 2006(10), 1015 (in Chinese). 李润霞, 李晨曦, 李荣德. 铸造, 2006(10), 1015.