Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22080058-18    https://doi.org/10.11896/cldb.22080058
  无机非金属及其复合材料 |
碳化钼的结构、制备及应用研究进展
邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强*, 周亚松
中国石油大学(北京)重质油国家重点实验室,北京 102249
Research Progress on Structure, Preparation and Application of Molybdenum Carbide
DENG Kaixin, LIU Chenghu, YU Zhiqing, HUANG Wenbin, WEI Qiang*, ZHOU Yasong
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
下载:  全 文 ( PDF ) ( 68027KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将碳原子引入钼的晶格中形成碳化钼时,形成的间充结构具有独特的物理和化学性质,在加氢反应和制氢反应等领域具有优异的催化性能,可与贵金属铂、钯相媲美。碳化钼化学性质活泼,合成方法和实验条件都密切影响着最终产品的物化性质,任何一种反应原料和实验条件发生微小变化,都可能造成碳化钼的晶相结构、晶粒大小、比表面积等产生较大变化,从而改变材料的催化性质。
   本文对几种典型碳化钼的晶相类型及空间结构分别进行了介绍,分析了影响碳化钼结构的电子性质和几何因素,系统总结了碳化钼的合成策略并指出了不同制备方法的优劣势。以程序升温还原法为例,分析了碳化钼的生长机理,并从碳化终温、升温速率、碳源浓度三方面着重讨论了制备条件对材料的影响。然后总结了碳化钼在加氢反应、制氢反应、传感器及生物医学材料等领域的应用,详细阐述了碳化钼在电催化析氢和CO2加氢转化反应中的催化机理及改进策略,最后基于目前存在的挑战进一步提出碳化钼材料未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓开鑫
刘澄虎
于志庆
黄文斌
魏强
周亚松
关键词:  碳化钼  晶体结构  程序升温还原法  合成策略  电解水析氢  三维材料    
Abstract: Molybdenum carbide is formed when carbon atoms are introduced into the crystal lattice of molybdenum. This kind of mesenchymal structure has unique physical and chemical properties. This material has excellent catalytic activity in hydrogenation reaction and hydrogen production reaction, and its catalytic performance can be compared with platinum and palladium. Molybdenum carbide has active chemical properties, so the synthesis method and experimental conditions closely affect the physical and chemical properties of the final product. Small changes in the reaction materials and experimental conditions may result in changes in the crystal phase structure, grain size, and specific surface area of molybdenum carbide, thus changing the catalytic performance of the material.
This paper reviews the research progress of molybdenum carbide. The crystalline phase types and spatial structure of several typical molybdenum carbides are introduced, the electronic properties affecting the structure of molybdenum carbide are analyzed, the synthetic strategies of molybdenum carbide are summarized systematically, and the advantages and disadvantages of different preparation methods are pointed out. Ta-king programmed temperature carbonization as an example, the growth mechanism is emphatically analyzed, and the influence and importance of preparation conditions on the final synthetic material are discussed from three aspects: final temperature of carbonization, heating rate, and carbon source concentration. The applications of molybdenum carbide in hydrogenation reaction, hydrogen production reaction, sensor, and biomedical materials are reviewed. The catalytic mechanism and improvement strategy of molybdenum carbide in electrocatalytic hydrogen evolution and CO2 hydroconversion are introduced in detail. Finally, based on the existing challenges, the future development direction of molybdenum carbide material is further proposed.
Key words:  molybdenum carbide    crystal structure    temperature programmed reduction    synthetic strategy    electrolysis of water for hydrogen evolution    3D material
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TQ426  
基金资助: 国家自然科学基金(22078360)
通讯作者:  *魏强,中国石油大学(北京)化学工程与环境学院教授、博士研究生导师。2001年7月本科毕业于山东大学,2009年中国石油大学(北京)化学工程与技术专业博士毕业。主要研究方向为重质油加工、清洁油品生产。获发明专利授权10余项,在国内外发表论文30余篇,包括Journal of Catalysis、Energy & Fuels、Catalysis Today、Fuel Processing Technology、Frontiers of Chemical Science and Enginee-ringis、Journal of Fuel Chemistry & Technology等。qwei@cup.edu.cn   
作者简介:  邓开鑫,2020年7月于西南石油大学获得工学学士学位。现为中国石油大学(北京)化学工程与环境学院硕士研究生,在魏强教授的指导下进行研究。目前主要研究领域为碳化钼催化剂的制备及应用。
引用本文:    
邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
DENG Kaixin, LIU Chenghu, YU Zhiqing, HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research Progress on Structure, Preparation and Application of Molybdenum Carbide. Materials Reports, 2024, 38(5): 22080058-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080058  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22080058
1 Szymańska-kolasa A, Lewandowski M, Sayag C, et al. Catalysis Today, 2006, 119(1-4), 7.
2 Xiao T C, York A, Al-megren H, et al. Comptes Rendus De Lacademie Des Sciences, 2000, 3(6), 451.
3 Agnieszka S, Marek L, Céline S, et al. Catalysis Today, 2007, 119(1-4), 35.
4 Lewandowski M, Szymanska-kolasa A, Sayag C, et al. Applied Catalysis, 2020, 261, 118239.
5 Feng G, Yu M, Wang H. Chemical Engineering of Oil & Gas, 2009, 38(2), 96.
6 Zhou H, Chen Z, Kountoupi E, et al. Nature Communications, 2021, 12(1), 5510.
7 Porosoff M D, Yang X, Boscoboinik J A, et al. Angewandte Chemie International Edition, 2014, 53(26), 6705.
8 Zhao J, Bai Y, Liang X, et al. Journal of CO2 Utilization, 2021, 49, 101562.
9 Ma Y, Chen M, Geng H, et al. Advanced Functional Materials, 2020, 30(19), 2000561.
10 Oran L, Noam Z, Hilah C, et al. ACS Catalysis, 2021, 11(21), 13707.
11 Yc A, Bg B, Mw A, et al. Nano Energy, 2021, 90, 106533.
12 Shi J, Hu L, Liu J, et al. Journal of Materials Chemistry A, 2022, 10(21), 11414.
13 Yang D, Chen M, Wu S, et al. Journal of Alloys and Compounds, 2021, 881, 160593.
14 Ivashchenko V I, Turchi P, Shevchenko V I, et al. Materials Chemistry and Physics, 2021, 275, 125178.
15 Wang W Q, Han Y, Li Z, et al. Ceramics International, 2020, 46(1), 755.
16 Lu J, Hugosson H, Eriksson O, et al. Thin Solid Films, 2000, 370(1), 203.
17 Wan C, Regmi Y N, Leonard B M. Angewandte Chemie, 2014, 126(25), 6525.
18 Fang P J, Wang B W, Daniel G. Surface and Coatings Technology, 2021, 420, 127333.
19 Kuo K, Hägg G. Nature, 1952, 170(4319), 245.
20 Dai C, Chen Y, Jing X, et al. ACS Nano, 2017, 11(12), 12696.
21 Shrestha A, Gao X, Hicks J C, et al. Chemistry of Materials, 2021, 33(12), 4606.
22 Fan Y, Xu C, Liu X, et al. NPG Asia Materials, 2020, 12(1), 60.
23 Chithaiah P, Binwal D C, Rao C N R. European Journal of Inorganic Chemistry, 2022, 2022(10), 1434.
24 Ge Y F, Song H, Bao K, et al. Journal of Alloys and Compounds, 2021, 881, 160631.
25 Qin T, Wang Z, Wang Y, et al. Nano-micro Letters, 2021, 13(1), 183.
26 Velikanova T Y, Kublii V Z, Khaenko B V. Soviet Powder Metallurgy and Metal Ceramics, 1988, 27(11), 891.
27 Parthé E, Sadogopan V. Acta Crystallogr, 1963, 16(3), 202.
28 Karaca E, Bacğ S, Tütüncü H M, et al. Journal of Alloys and Compounds, 2019, 788(4), 842.
29 Liu H, Zhu J, Lai Z, et al. Scripta Materialia, 2009, 60(11), 949.
30 Li J. Preparation and electrochemical energy storage behavior of transitionmetal iron and molybdenum carbide materials. Master's Thesis, Lanzhou University of Technology, China, 2020(in Chinese).
李军. 过渡金属铁、钼碳化物材料的制备及电化学储能行为研究. 硕士学位论文, 兰州理工大学, 2020.
31 Liu Y Z, Jiang Y H, Feng J, et al. Physica B:Physics of Condensed Matter, 2013, 419(15), 45.
32 Kavitha M, Priyanga G S, Rajeswarapalanicham R, et al. Materials Chemistry and Physics, 2016, 169, 71.
33 Kitchin J R, Norskov J K, Barteau M A, et al. Catalysis Today, 2005, 105(1), 66.
34 Zhao Z S. Theoretical and experimental studies on new structures and properties of carbon group elements and transition metal carbides. Ph. D. Thesis, Yanshan University, China, 2012(in Chinese).
赵智胜. 碳族元素和过渡金属碳化物新结构及性能的理论与实验研究. 博士学位论文, 燕山大学, 2012.
35 Oyama S T. Catalysis Today, 1992, 15(2), 179.
36 Liu Y, Kelly T G, Chen J G, et al. ACS Catalysis, 2013, 3(6), 1184.
37 Bosi, Ferdinando. Acta Crystallographica Section B: Structural Science, 2014, 70(5), 864.
38 Parham, Roohi, Reza, et al. International Journal of Minerals, Metallurgy and Materials, 2016, 23(3), 339.
39 Volpe L, Boudart M. Journal of Solid State Chemistry, 1985, 59(3), 332.
40 Zheng W, Cotter T P, Kaghazchi P, et al. Journal of the American Chemical Society, 2013, 135(9), 3458.
41 Bouchy C, Schmidt I, Anderson J R, et al. Journal of Molecular Catalysis A:Chemical, 2000, 163(1-2), 283.
42 Zhou Y Q, Chen M, Xu L J, et al. Fine Chemicals, 2018, 35(11), 1921(in Chinese).
周燕强, 陈萌, 徐立军, 等. 精细化工, 2018, 35(11), 1921.
43 Guzmán H J, Xu W, Stacchiola D, et al. Canadian Journal of Chemistry, 2013, 91(7), 573.
44 Song C M, Zhang G H, Zhou G Z. Chinese Journal of Nonferrous Metals, 2020, 30(4), 906(in Chinese).
宋成民, 张国华, 周国治. 中国有色金属学报, 2020, 30(4), 906.
45 Cheng J M, Huang W, Zuo Z J. Journal of Chemistry from Universities, 2010, 31(1), 130(in Chinese).
程金民, 黄伟, 左志军. 高等学校化学学报, 2010, 31(1), 130.
46 Mo T, Xu J, Yang Y, et al. Catalysis Today, 2016, 261, 101.
47 Jin G Z, Zhao R S, Luo Y Q, et al. Journal of Fuel Chemistry, 2008, 36(6), 738(in Chinese).
靳广洲, 赵如松, 罗运强, 等. 燃料化学学报, 2008, 36(6), 738.
48 Xu W, Ramirez P J, Stacchiola D, et al. Catalysis Letters, 2014, 144(8), 1418.
49 Hu C Y, Li J H. Rare Metals, 2001, 25(5), 364(in Chinese).
胡昌义, 李靖华. 稀有金属, 2001, 25(5), 364.
50 Shi Z T. Preparation of MoS2 thin films by chemical vapor deposition and characterization of their electrical properties. Master's Thesis, Beijing General Research Institute of Nonferrous Metals, China, 2015(in Chinese).
史志天. 化学气相沉积法制备二硫化钼薄膜及电学性能表征. 硕士学位论文, 北京有色金属研究总院, 2015.
51 Xu C, Song S, Liu Z, et al. ACS Nano, 2017, 11(6), 5906.
52 Chaitoglou S, Tsipas P, Speliotis T, et al. Journal of Crystal Growth, 2018, 495, 46.
53 Xu C, Wang L, Liu Z, et al. Nature Materials, 2015, 14(11), 1135.
54 Chaitoglou S, Giannakopoulou T, Papanastasiou G, et al. Applied Surface Science, 2020, 510, 145516.
55 Jia J, Xiong T, Zhao L, et al. ACS Nano, 2017, 11(12), 12509.
56 Gavrilova N N, Nazarov V V, Skudin V V. Kinetics & Catalysis, 2015, 56(5), 670.
57 Caylan O, Buke G. Scientific Reports, 2020, 11(1), 8247.
58 Chang H Q, Zhang G H, Chou K C. Metallurgical and Materials Tran-sactions B, 2022, 53(1), 96.
59 Song C M, Cao W C, Bu C Y, et al. Journal of the Australian Ceramic Society, 2020, 56(4), 1333.
60 Qin Y, Chen P, Duan J Z, et al. RSC Advances, 2013, 3(38), 17485.
61 Wang H Y, Liu S D, Smith K J , et al. Energy & Fuels, 2016, 30(7), 6039.
62 Wang H, Liu S, Liu B, et al. Journal of Solid State Chemistry, 2018, 258, 818.
63 Bokhonov B, Yu B, Korchagin M. Carbon, 2004, 42(10), 2067.
64 Baddour F G, Roberts E J, To A T, et al. Journal of the American Che-mical Society, 2020, 142(2), 1010.
65 Patel M, Subrahmanyam J. Materials Research Bulletin, 2008, 43(8-9), 2036.
66 Stux A M, Laberty-robert C, Swider-lyons K E. Journal of Solid State Chemistry, 2008, 181(10), 2741.
67 Du Q Q, Zhao R H, Chen X J, et al. Chemistry—an Asian Journal, 2021, 16(15), 2107.
68 Yang Z, Cai P, Shi L, et al. Cheminform, 2006, 179(1), 29.
69 Lagashetty A, Havanoor V, Basavaraja S, et al. Bulletin of Materials Science, 2005, 28(5), 477.
70 Wei G, Qin W, Zhang D, et al. Journal of Alloys & Compounds, 2009, 481(1-2), 417.
71 Hoseinpur A, Jalaly M, Bafghi M S, et al. Materials Characterization, 2015, 108, 79.
72 Valk P, Nerut J, Tallo I, et al. Electrochimica Acta, 2016, 191(10), 337.
73 Jäger R R, Kasatkin P E, Härk E, et al. Electrochemistry Communications, 2013, 35(8), 97.
74 Vaarmets K, Sepp S, Nerut J, et al. ECS Transactions, 2016, 75(14), 899.
75 Lou X W, Zeng H C. Chemistry of Materials, 2002, 14(11), 4781.
76 Hassan M F, Guo Z P, Chen Z, et al. Journal of Power Sources, 2010, 195(8), 2372.
77 Pak A, Yakich T Y, Mamontov G Y, et al. Technical Physics, 2020, 65(5), 771.
78 Pak A Y, Ivashutenko A S, Zakharova A A, et al. Inorganic Materials: Applied Research, 2019, 10(4), 836.
79 Vassilyeva Y Z, Pak A Y, Kononenko P N, et al. Inorganic Materials, 2022, 58(3), 265.
80 Laursen A B, Kegnæs S, Dahl S, et al. Energy & Environmental Science, 2012, 5(2), 5577.
81 Ang H, Tan H T, Luo Z M, et al. Small, 2015, 11(47), 6278.
82 dos Santos P J R, Vines F, Rodriguez J A, et al. Physical Chemistry Chemical Physics, 2013, 15(30), 12617.
83 Shi J, Hu L, Liu J, et al. Journal of Materials Chemistry A, 2022, 10(21), 11414.
84 Ji L, Wang J, Teng X, et al. ACS Applied Materials & Interfaces, 2018, 10(17), 14632.
85 Yu F, Gao Y, Lang Z, et al. Nanoscale, 2018, 10(13), 6080.
86 Seh Z W, Fredrickson K D, Anasori B, et al. ACS Energy Letters, 2016, 1(3), 589.
87 Xiong J, Li J, Shi J, et al. ACS Energy Letters, 2018, 3(2), 341.
88 Yuan W, Huang Q, Yang X, et al. ACS Applied Materials & Interfaces, 2018, 10(47), 40500.
89 Anasori B, Lukatskaya M R, Gogotsi Y. Nature Reviews, 2017, 2, 16098.
90 Yang Y, Fei H, Ruan G, et al. Advanced Materials, 2014, 26(48), 8163.
91 Chen Y C, Lu A Y, Lu P, et al. Advanced Materials, 2017, 29(44), 1703863.
92 Zhu Y P, Guo C, Zheng Y, et al. Accounts of Chemical Research, 2017, 50(4), 915.
93 Pu J X, Cao J, Wei Q P, et al. Materials Research and Application, 2020, 14(1), 14(in Chinese).
蒲佳璇, 曹军, 魏秋平, 等. 材料研究与应用, 2020, 14(1), 14.
94 Ang H, Wang H, Bing L, et al. Small, 2016, 12(21), 2859.
95 Lori O, Zion N, Honig H C, et al. ACS Catalysis, 2021, 11(21), 13707.
96 Kou Z, Zhang L, Ma Y, et al. Applied Catalysis B: Environmental, 2018, 243(14), 678.
97 Sun Y L, Zhang J Z, Yang X D, et al. Journal of Functional Materials, 2023, 54(10), 10007(in Chinese).
孙永利, 张佳柱, 杨晓东, 等. 功能材料, 2023, 54(10),10007.
98 Wang L F, Zhao S L, Liu Y C, et al. ACS Applied Materials & Interfaces, 2021, 13(42), 50524.
99 Li J S, Wang Y, Liu C H, et al. Nature Communications, 2016, 7(1), 1.
100 Youn D H, Han S, Kim J Y, et al. ACS Nano, 2014, 8(5), 5164.
101 Zhang F, Zheng W, Lu Y, et al. Proceedings of the National Academy of Sciences, 2020, 117(33), 19685.
102 Ruan Z, Ni J, Yan J, et al. International Journal of Hydrogen Energy, 2021, 46(2), 1517.
103 Ling Y, Kazim F M D, Zhang Q, et al. International Journal of Hydrogen Energy, 2021, 46(15), 9699.
104 Patt J, Moon D J, Phillips C, et al. Catalysis Letters, 2000, 65(4), 193.
105 Tominaga H, Nagai M. The Journal of Physical Chemistry B, 2005, 109(43), 20415.
106 Schweitzer N M, Schaidle J A, Ezekoye O K, et al. Journal of the American Chemical Society, 2011, 133(8), 2378.
107 Sabnis K D, Cui Y, Akatay M C, et al. Journal of Catalysis, 2015, 331, 162.
108 Ma Y, Guan G, Hao X, et al. RSC Advances, 2015, 5(20), 15002.
109 Yao S, Zhang X, Zhou W, et al. Science, 2017, 357(6349), 389.
110 Liu J, Wang P, Fan J, et al. Journal of Energy Chemistry, 2020, 51, 253.
111 Wang Y, Tu W, Hong J, et al. Journal of Materiomics, 2016, 2(4), 344.
112 Dantas S L A, Silva M M S, Gomes Y F, et al. Applied Physics A, 2021, 127(2), 1.
113 Cai F, Ibrahim J J, Fu Y, et al. Industrial & Engineering Chemistry Research, 2020, 59(42), 18756.
114 Kurlov A, Deeva E B, Abdala P M, et al. Nature Communications, 2020, 11(1), 1.
115 Cheng J, Huang W. Fuel Processing Technology, 2010, 91(2), 185.
116 Chen X, Zhang T, Zheng M, et al. Industrial & Engineering Chemistry Research, 2004, 43(19), 6040.
117 Wang H, Wang A, Wang X, et al. Chemical Communications, 2008(22), 2565.
118 Posada-Pérez S, Vines F, Ramirez P J, et al. Physical Chemistry Che-mical Physics, 2014, 16(28), 14912.
119 Liu X, Song Y, Geng W, et al. Catalysts, 2016, 6(5), 75.
120 Han H, Geng W, Xiao L, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 112.
121 Juneau M, Vonglis M, Hartvigsen J, et al. Energy & Environmental Science, 2020, 13(8), 2524.
122 Ma Y, Guo Z, Jiang Q, et al. Journal of Energy Chemistry, 2020, 50, 37.
123 Yang X. Catalytic effect of noble metal-like molybdenum carbide in CO2 catalyzed hydrogenation to methane. Master's Thesis, Ningxia University, China, 2019(in Chinese).
杨旭. CO2催化加氢制甲烷反应中类贵金属碳化钼的催化作用. 硕士学位论文, 宁夏大学, 2019.
124 Casavola M, Xie J, Meeldijk J D, et al. ACS Catalysis, 2017, 7(8), 5121.
125 Raghav H, Konathala L N S K, Mishra N, et al. Journal of CO2 Utilization, 2021, 50, 101607.
126 Griboval-Constant A, Giraudon J M, Leclercq G, et al. Applied Catalysis A: General, 2004, 260(1), 35.
127 Liu C, Lin M, Jiang D, et al. Catalysis Letters, 2014, 144(4), 567.
128 Kumar A, Bhan A. Chemical Engineering Science, 2019, 197, 371.
129 Puello-Polo E, Ayala G M, Brito J L. CT&F-Ciencia, Tecnología y Futuro, 2014, 5(4), 61.
130 Qiu Z G, Li Q, Ma S B, et al. Journal of Fuel Chemistry, 2020, 48(3), 357(in Chinese).
邱泽刚, 李侨, 马少博, 等. 燃料化学学报, 2020, 48(3), 357.
131 Jujjuri S, Cárdenas-Lizana F, Keane M A. Journal of Materials Science, 2014, 49(15), 5406.
132 Wang F, Xu J M, Jiang J C, et al. Materials Reports, 2018, 32(5), 765(in Chinese).
王霏, 徐俊明, 蒋剑春, 等. 材料导报, 2018, 32(5), 765.
133 Roy P K, Kumar S. ACS Applied Energy Materials, 2020, 3(7), 7167.
134 Xu Y, Chen T, Wang T, et al. Nanoscale, 2018, 10(46), 21944.
135 Meng Y, Gu F, Wang H Y, et al. Industrial Catalysis, 2009, 17(3), 18(in Chinese).
孟禹, 谷峰, 王海彦, 等. 工业催化, 2009, 17(3), 18.
136 Dai W, Lu H, Yang F, et al. Chemical Communications, 2019, 55(71), 10615.
137 Zhou L, Zhou X, Zhao C, et al. Microchemical Journal, 2021, 165, 106169.
138 Wang M, Zhang Y, Cui M, et al. Biosensors and Bioelectronics, 2020, 165, 112373.
139 Hassan A, Ilyas S Z, Ahmed S, et al. Physics Letters A, 2021, 392, 127119.
140 Long Y, He P, Xu R, et al. Carbon, 2020, 157, 594.
141 Feng W, Wang R, Zhou Y, et al. Advanced Functional Materials, 2019, 29(22), 1901942.
142 Zhang Q, Huang W, Yang C, et al. Biomaterials Science, 2019, 7(7), 2729.
143 Cekli C, Goller G. International Journal of Materials Research, 2019, 110(11), 1039.
144 Liu Y Z, Jiang Y H, Zhou R, et al. Ceramics International, 2015, 41(4), 5239.
[1] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[2] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[3] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[4] 刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
[5] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[6] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[7] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[8] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[9] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[10] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[11] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[12] 王成志, 高凤雨, 于庆君, 易红宏, 倪书权, 唐晓龙. 三聚氰胺海绵基高效柔性脱硝催化材料的合成及性能研究[J]. 材料导报, 2021, 35(21): 21079-21084.
[13] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[14] 张超凡, 管学茂, 张海波, 勾密峰, 胡恩立, 王恒. 机械力化学改性钙基膨润土提高注浆材料的稳定性[J]. 材料导报, 2019, 33(20): 3408-3412.
[15] 徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed