Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070218-6    https://doi.org/10.11896/cldb.22070218
  无机非金属及其复合材料 |
再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响
陈立俊1, 李滢1,*, 陈文浩2
1 青海大学土木工程学院,西宁 810016
2 青海省建筑节能材料与工程安全重点实验室,西宁 810016
Effect of Recycled Powder and Mineral Admixture on the Mechanical Properties and Microstructure of Concrete
CHEN Lijun1, LI Ying1,*, CHEN Wenhao2
1 School of Civil Engineering, Qinghai University, Xining 810016, China
2 Qinghai Provincial Key Laboratory of Energy Saving Building Materials and Engineering Safety, Xining 810016, China
下载:  全 文 ( PDF ) ( 9994KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高再生微粉在混凝土中的利用率,将单掺再生微粉的混凝土与复掺再生微粉、粉煤灰和硅灰的混凝土的力学性能及微观结构进行了对比研究。结果表明,单掺再生微粉和三者复掺对混凝土的抗压强度和孔结构有不同程度的影响,当掺量低于20%时,单掺再生微粉的混凝土抗压强度高于同掺量时的复掺混凝土,孔隙率相比于复掺时也有所降低;而掺量高于20%时,复掺效果优于单掺,特别是当复掺掺量为30%时,混凝土28 d抗压强度相比单掺掺量为30%时提高了33.4%,总孔隙率和大孔占总孔隙的比例分别降低了4.4%和17.77%。这说明再生微粉的掺入量较大会给混凝土带来不利影响,但添加粉煤灰与硅灰后,它们可以发挥协同作用,从而改善混凝土的复合水泥基体强度和孔结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈立俊
李滢
陈文浩
关键词:  再生微粉  混凝土  微观结构  力学性能  孔结构  协同作用    
Abstract: In order to improve the utilization rate of recycled powder in concrete, the mechanical properties and microstructure of single-doped recycled powder concrete and compound recycled powder, fly ash and silica ash concrete were compared. The results show that the single-doped recycled fine powder and the three-way re-mixing have different degrees of influence on the compressive strength and pore structure of the concrete, and when the dosage is less than 20%, the compressive strength of the single-doped recycled fine powder is higher than that of the re-mixed concrete when it was combined, and the porosity was also reduced relative to the re-doping time. When the dosage is higher than 20%, the compounding effect is better than that of single doping, especially when the compounding is 30%, the compressive strength of the concrete in 28 d is increased by 33.4% compared with the single doping by 30%, and the total porosity and the proportion of large pores to total pores are reduced by 4.4% and 17.77%, respectively. This shows that when the amount of recycled powder is incorporated, it will adversely affect the concrete, but after adding fly ash and silica ash, it can play a synergistic effect to improve the composite cement matrix strength and pore structure of the concrete.
Key words:  recycled powder    concrete    microstructure    mechanical property    pore structure    synergistic effect
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51668052);青海省科技厅基础研究计划项目(2023-ZJ-725)
通讯作者:  *李滢,青海大学土木工程学院教授,1997年7月重庆建筑大学建筑材料及制品专业毕业后到青海大学工作至今,2003年6月在清华大学获得材料学专业硕士学位。目前主要从事高性能混凝土、再生混凝土及固体废物再生利用等方面的研究,在国内外重要期刊发表文章30多篇。 liying.qh@163.com   
作者简介:  陈立俊,2020年7月于青海民族大学获得工学学士学位。现为青海大学土木工程学院硕士研究生,在李滢教授的指导下进行研究,主要从事再生微粉混凝土耐久性及寿命预测研究。
引用本文:    
陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
CHEN Lijun, LI Ying, CHEN Wenhao. Effect of Recycled Powder and Mineral Admixture on the Mechanical Properties and Microstructure of Concrete. Materials Reports, 2024, 38(5): 22070218-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070218  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22070218
1 Xiao J, Ma Z, Sui T, et al. Journal of Cleaner Production, 2018, 188, 720.
2 Zhang D L, Lyu J, Chen H, et al. Building Construction, 2005(6), 68(in Chinese).
张大利, 吕晶, 陈辉, 等. 建筑施工, 2005(6), 68.
3 Lu D Y, Zhang S H, Xu J T, et al. Journal of the Chinese Ceramic Society, 2017, 45(5), 662(in Chinese).
卢都友, 张少华, 徐江涛, 等. 硅酸盐学报, 2017, 45(5), 662.4 Liu C, Hu T F, Liu H W, et al. Journal of Building Materials, 2021, 24(4), 726(in Chinese).
刘超, 胡天峰, 刘化威, 等. 建筑材料学报, 2021, 24(4), 726.
5 He Z H, Zhang M Y, Zhan P M, et al. Concrete and Cement Products, 2021(5), 85(in Chinese).
何智海, 张梦圆, 詹培敏, 等. 混凝土与水泥制品, 2021(5), 85.
6 Lyu X R. Study on flexural behavior of high ductility recycled micro-powder concrete (HDRPC) beams. Master's Thesis, Shandong Jianzhu University, China, 2021(in Chinese).
吕相蓉. 高延性再生微粉混凝土(HDRPC)梁抗弯性能研究. 硕士学位论文, 山东建筑大学, 2021.
7 Peng C Y, Zhang X P, Yu B, et al. Concrete, 2020(1), 22(in Chinese).
彭春元, 张小鹏, 余斌, 等. 混凝土, 2020(1), 22.
8 Bai H L, Fan Y H, Li Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2628(in Chinese).
白花蕾, 樊耀虎, 李滢, 等. 硅酸盐通报, 2020, 39(8), 2628.
9 Li X L, Wu R, Guo Q. Journal of Shandong Jianzhu University, 2021, 36(5), 11(in Chinese).
李秀领, 吴睿, 郭强. 山东建筑大学学报, 2021, 36(5), 11.
10 Wu B Y, Xie X F, Huang Y L, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(6), 1490(in Chinese).
吴本英, 谢秀芳, 黄映丽, 等. 硅酸盐通报, 2014, 33(6), 1490.
11 Ngala V T, Page C L, Parrott L J, et al. Cement & Concrete Research, 1995, 25(4), 819.
12 Xie Y J, Ma K L, Long G C, et al. Journal of the Chinese Ceramic Society, 2006, 34(11), 1345(in Chinese).
谢友均, 马昆林, 龙广成, 等. 硅酸盐学报, 2006, 34(11), 1345.
13 Wu X H, Yue P J. Journal of Building Materials, 2011, 14(3), 381(in Chinese).
吴相豪, 岳鹏君. 建筑材料学报, 2011, 14(3), 381.
14 Liu W. Study on chloride ion penetration resistance of concrete. Master's Thesis, Central South University, China, 2003(in Chinese).
刘伟. 混凝土抗氯离子渗透性能研究. 硕士学位论文, 中南大学, 2003.
15 Li Y, Kang X M, Chen X, et al. China Powder Technology, 2022, 28(3), 107(in Chinese).
李滢, 康晓明, 陈曦, 等. 中国粉体技术, 2022, 28(3), 107.
16 Liu S H, Leng F G, Li L H. Concrete auxiliary cementing material, China Building Materials Press, China, 2010, pp.106(in Chinese).
刘数华, 冷发光, 李丽华. 混凝土辅助胶凝材料, 中国建材出版社, 2010, pp.106.
17 Dang J T, Zhao J. Construction and Building Materials, 2019, 228, 116757.
18 Lin L, Wu H, Xie J L, et al. Waste Management & Research, 2010, 28(7), 653.
19 Shao J, Gao J M, Zhao Y S, et al. Construction and Building Materials, 2019, 49(2), 375.
20 Florea M V A, Ning Z, Brouwers H J H. Construction and Building Materials, 2014, 50, 1.
21 Li Y. Concrete, 2013(5), 65(in Chinese).
李滢. 混凝土, 2013(5), 65.
22 Xie Y J, Liu B J, Liu W. Journal of Railway Science and Engineering, 2004, 1(2), 46(in Chinese).
谢友均, 刘宝举, 刘伟. 铁道科学与工程学报, 2004, 1(2), 46.
23 Zhu B R, Yang Q B. Journal of the Chinese Ceramic Society, 2004(7), 892(in Chinese).
朱蓓蓉, 杨全兵. 硅酸盐学报, 2004(7), 892.
[1] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[2] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[3] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[4] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[5] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[6] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[7] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[8] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[9] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[10] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[11] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[12] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[13] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[14] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[15] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed