Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21080057-6    https://doi.org/10.11896/cldb.21080057
  金属与金属基复合材料 |
电火花放电法合成Cu0.81Ni0.19合金的性能研究
魏亚洲1,2, 刘一凡3, 李翔龙1,2,*
1 四川大学机械工程学院,成都 610065
2 创新方法与创新设计四川省重点实验室,成都 610065
3 电子科技大学材料与能源学院,成都 611731
Study on the Properties of Cu0.81Ni0.19 Alloy Synthesized by Electrical Discharge Method
WEI Yazhou1,2, LIU Yifan3, LI Xianglong1,2,*
1 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
2 Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
3 School of Materials and Energy, University of Electronic Science and Technology, Chengdu 611731, China
下载:  全 文 ( PDF ) ( 4294KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微米Cu-Ni合金粉体因具有优异的导电性、耐腐蚀性和磁学性能而被广泛应用于微电子元器件、航空航天以及粉末冶金等领域。本研究基于电火花放电腐蚀法,通过调控电流参数成功制备出以Cu0.81Ni0.19为主要晶相的铜镍合金。采用XRD、SEM、EDS等技术对合金粉体进行了相关性能表征分析,结果表明:在原子结晶过程中,Ni作为溶质原子占据Cu原子部分结点位置后发生固溶反应,生成了Cu0.81Ni0.19合金相,该合金为面心立方(FCC)晶体结构,表面光滑,分散均匀,大部分颗粒呈现出球形或类球形,电流增大时,Cu含量增加,Ni含量减小。粒度分析数据表明,合金粉体的粒度分布区间为0.12~92.57 μm,且随着电流强度的增大,平均粒径增大,说明在微米尺度范围内电流的增大有助于产生粒度较大的合金颗粒,当电流为36 A时,合金粉体的平均粒径(D50)为13.94 μm,此时,合金粉体的饱和磁化强度和矫顽力分别为26.21 emu/g、52.97 Oe,材料表现出优异的软磁性能,且电流越大,合金粉体的磁学性能越优异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏亚洲
刘一凡
李翔龙
关键词:  电火花放电  铜镍合金  晶体结构  粒度分布  软磁性    
Abstract: Micro Cu-Ni alloy powders are widely used in microelectronic components, aerospace and powder metallurgy because of their excellent electrical conductivity, corrosion resistance and magnetic properties. In this study, copper-nickel alloys with Cu0.81Ni0.19 as the main crystalline phase were successfully prepared based on the electrical discharge corrosion method by tuning the current parameters. The results show that during the atomic crystallization process, Ni as a solute atom occupies the part of the nodal position of Cu atom and then the solid solution reaction occurs to generated the Cu0.81Ni0.19 alloy phase. The alloy has a face-centered cubic (FCC) crystal structure with smooth surface and uniform dispersion, and most of the particles show a spherical or sphere-like shape. When the current increases, the content of Cu element increases and the content of Ni element decreases. The particle size analysis shows that the particle size distribution of the alloy powder ranged from 0.12 μm to 92.57 μm, and the average particle size increased with the increase of current intensity, which indicates that the increase of current helps to produce alloy particles with large size for the micron scale range. The average particle size (D50) of the alloy powder was 13.94 μm when the current was 36 A, at this time, the saturation magnetization strength and coercivity of the alloys were 26.21 emu/g and 52.97 Oe, respectively, the sample exhibited excellent soft magnetic properties and the better magnetic properties of the alloy powder with the increase of current.
Key words:  electric spark discharge    copper-nickel alloys    crystal structure    particle size distribution    soft magnetic
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TG146.11  
基金资助: 国家自然科学基金(51275324);科技部创新方法工作专项(2017IM010700)
通讯作者:  *李翔龙,四川大学机械工程学院教授、博士研究生导师。1993年在哈尔滨工程大学机械制造工艺及设备专业获得工学学士学位,分别于1996年、2003年在四川大学机械制造及其自动化专业获得工学硕士学位和工学博士学位。目前主要从事计算机辅助设计与制造、现代加工技术、计算机数控等方面的研究工作。发表论文65篇,包括Materials Reports、Materials Research Express、Advanced Powder Technology等。lxlnc@163.com   
作者简介:  魏亚洲,2019年于辽宁工业大学获得工学学士学位。2022年于四川大学获得工程硕士学位。硕士在校期间主要研究领域为现代制造技术。
引用本文:    
魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
WEI Yazhou, LIU Yifan, LI Xianglong. Study on the Properties of Cu0.81Ni0.19 Alloy Synthesized by Electrical Discharge Method. Materials Reports, 2023, 37(9): 21080057-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080057  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21080057
1 Ekmekci B, Yasar H, Ekmekci N. Journal of Manufacturing Science and Engineering, 2016, 138(8), 081006.
2 Tseng K H, Chung M Y, Chang C Y. Nanomaterials, 2017, 7(6), 133.
3 Katiyar J K, Sharma A K, Pandey B. Materials and Manufacturing Processes, 2018, 33(14), 1531.
4 Shabgard M R, Najafabadi A F. Advanced Powder Technology, 2014, 25(3), 937.
5 Sun J, Chen Y R, Huang K K, et al. Applied Surface Science, 2020, 500, 144052.
6 Shen Y, Zhou Y F, Wang D, et al. Advanced Energy Materials, 2018, 8(2), 1701759. 1.
7 Wu J, Gao G, Li J L, et al. Applied Catalysis B:Environmental, 2017, 203, 227.
8 Muntean A, Wagner M, Meyer J, et al. Journal of Nanoparticle Research, 2016, 18(8), 229.
9 Manzano C V, Caballero C O, Tranchant M, et al. Journal of Materials Chemistry C, 2021, 9(10), 3447.
10 Bukhari S M, Fritzsche H, Tun Z. Thin Solid Films, 2016, 619, 33.
11 Liu Y F, Li X L, Bai F S, et al. Particuology, 2014, 17, 36.
12 Hou Q L, Liu Y F, Lin F M, et al. Materials Reports, 2020, 34(16), 16114(in Chinese).
侯启龙, 刘一凡, 林发明, 等. 材料导报, 2020, 34(16), 16114.
13 Murray J, Zdebski D, Clare A T. Journal of Materials Processing Technology, 2012, 212(7), 1537.
14 Tabrizi N S, Xu Q. Journal of Nanoparticle Research, 2009, 11(5), 1209.
15 Song H W, Li X L, Zhang C. Modern Manufacturing Engineering, 2011(11), 90(in Chinese).
宋宏伟, 李翔龙, 张楚. 现代制造工程, 2011(11), 90.
16 Lu J, Ma S Y, Wang X X, et al. Computational Materials Science, 2018, 143, 439.
17 Overman N R, Li X, Olszta M J, et al. Materials Characterization, 2021, 171, 110759.
18 Farzana R, Hassan K, Wang W, et al. Journal of Environmental Management, 2019, 234, 145.
[1] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[2] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[3] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[4] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[5] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[6] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[7] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[8] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[9] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[10] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[11] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[12] 史燕娟, 冯梦梦, 陈光楠, 肖欢, 石贵滨, 曹承然, 何松. SiO2凝胶干水粉体性能研究[J]. 材料导报, 2020, 34(16): 16025-16030.
[13] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[14] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[15] 袁腾, 梁斌, 黄家健, 杨卓鸿, 邵庆辉. 壳层厚度对中空苯丙乳胶粒结构形态及遮盖性的影响[J]. 材料导报, 2019, 33(4): 724-728.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed