Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22120188-8    https://doi.org/10.11896/cldb.22120188
  无机非金属及其复合材料 |
从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型
童涛涛1, 李宗利1,2,*, 刘士达3, 张晨晨1, 金鹏1
1 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100
2 西北农林科技大学旱区农业水土工程教育部重点实验室,陕西 杨凌 712100
3 山东电力工程咨询院有限公司,济南 250013
Multiscale Upscaling Model for Elastic Properties from Calcium Silicate Hydrate Nanoparticle to Cement Paste
TONG Taotao1, LI Zongli1,2,*, LIU Shida3, ZHANG Chenchen1, JIN Peng1
1 College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, Shaanxi, China
2 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University, Yangling 712100, Shaanxi, China
3 Shandong Electric Power Engineering Consulting Institute Corp., Ltd., Jinan 250013, China
下载:  全 文 ( PDF ) ( 11681KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土具有多尺度结构特征,其力学性能受到不同水化产物组分及微观结构的影响。基于分子动力学方法、化学计量法和均质化方法,建立了从纳米尺度水化硅酸钙(C-S-H)到水泥净浆弹性性能多尺度递推模型,其计算结果与实验数据吻合较好。基于该模型的计算结果可得:C-S-H凝胶中44%的孔隙率致使其体积模量、剪切模量和杨氏模量分别降低了约66%、53%和55%。当水灰比从0.3变化至0.5时,水泥净浆的体积模量、剪切模量和杨氏模量分别降低了约39%、30%和32%;LD C-S-H和毛细孔的体积分数分别增大了13%和20%。水化产物中C-S-H的体积分数越大,或水泥熟料中硅酸三钙的质量分数越大,水泥净浆的弹性参数越大。该模型为水泥基材料微观调控提供了指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童涛涛
李宗利
刘士达
张晨晨
金鹏
关键词:  纳米水化硅酸钙  水泥净浆  弹性性能  多尺度递推模型  分子动力学  均质化    
Abstract: Concrete has multiscale structure and its mechanical properties are affected by different hydration products and microstructure. Based on molecular dynamics, stoichiometry and homogenization method, a multiscale upscaling model of elastic properties fromcalcium silicate hydrate (C-S-H) nanoparticle to cement paste was proposed. And the calculated results are in good agreement with the experimental data. Based on the model, it was found that the 44% porosity of C-S-H gel reduced the bulk modulus, shear modulus and Young’s modulus by about 66%, 53% and 55%, respectively. When the water/cement ratio changed from 0.3 to 0.5, the bulk modulus, shear modulus and Young’s modulus of the cement paste decreased by about 39%, 30% and 32%, respectively. And the volume fraction of LD C-S-H and capillary pores increased by 13% and 20%, respectively. The greater the volume fraction of C-S-H in hydration products or the mass fraction of tricalcium silicate in cement clinker, the greater the elastic parameters of cement paste. The model provided guidance for microcontrol of cement-based materials.
Key words:  calcium silicate hydrate nanoparticle    cement paste    elastic property    multiscale upscaling model    molecular dynamics    homogenization
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TU525  
基金资助: 国家自然科学基金(51379178);国家重点研发计划(2017YFC0405101-2)
通讯作者:  李宗利,博士,西北农林科技大学教授、博士研究生导师。1989年西北农业大学农田水利工程专业本科毕业,1992年西北农业大学硕士研究生毕业,2005年河海大学水工结构工程博士研究生毕业。在国内外专业期刊发表学术论文100余篇,其中SCI、EI收录40余篇。其团队主要研究方向包括岩体混凝土等材料的水力劈裂、湿度和缺陷对混凝土力学及水力学特性影响规律。先后主持国家自然科学基金2项、科技重点研发计划专题1项,参加国家自然科学基金、教育部科学研究重点基金等项目多项。bene@nwsuaf.edu.cn   
作者简介:  童涛涛,2017年黑龙江大学水利水电工程专业本科毕业,2020年西北农林科技大学水利工程专业硕士研究生毕业。现为西北农林科技大学博士研究生。研究工作主要围绕湿度对混凝土性能影响的理论和应用研究。
引用本文:    
童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
TONG Taotao, LI Zongli, LIU Shida, ZHANG Chenchen, JIN Peng. Multiscale Upscaling Model for Elastic Properties from Calcium Silicate Hydrate Nanoparticle to Cement Paste. Materials Reports, 2024, 38(7): 22120188-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22120188  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22120188
1 Constantinides G, Ulm F J. Cement and Concrete Research, 2004, 34(1), 67.
2 Adolphs J. Materials and Structures, 2005, 38(4), 443.
3 Mehta P K. Concrete: microstructure properties and materials, China Electric Power Press, China, 2016, pp. 155 (in Chinese).
梅塔. 混凝土:微观结构、性能和材料, 中国电力出版社, 2016, pp.155.
4 Tennis P D, Jennings H M. Cement and Concrete Research, 2000, 30(6), 855.
5 Jennings H M. Cement and Concrete Research, 2008, 38(3), 275.
6 Qomi M J A, Krakowiak K J, Bauchy M, et al. Nature Communications, 2014, 5, 4960.
7 Pustovgar E, Sangodkar R P, Andreev A S, et al. Nature Communications, 2016, 7, 10952.
8 Nadeau J C. Cement and Concrete Research, 2003, 33(1), 103.
9 Sanahuja J, Dormieux L, Chanvillard G. Cement and Concrete Research, 2007, 37(10), 1427.
10 Hu C, Li Z. Construction and Building Materials, 2014, 71(30), 44.
11 Huang J, Krabbenhoft K, Lyamin A V. International Journal of Solids and Structures, 2013, 50(5), 699.
12 Zhou J, Huang J, Jin L. Advances in Cement Research, 2016, 28(2), 73.
13 Pellenq R J M, Kushima A, Shahsavari R, et al. Proceedings of the National academy of Sciences of the United States of America, 2009, 106(38), 16102.
14 Zhang Y, Han L. Foundation of mesomechanics, China Science Press, China, 2014, pp. 78 (in Chinese).
张研, 韩林. 细观力学基础, 科学出版社, 北京, 2014, pp. 78.
15 Jennings H M. Materials and Structures, 2004, 37(1), 59.
16 Wong H S, Buenfeld N R. Cement and Concrete Research, 2009, 39(10), 957.
17 Sarkar P K, Mitra N. Cement and Concrete Research, 2021, 145, 106451.
18 Kai M F, Zhang L W, Liew K M. Cement and Concrete Research, 2021, 142, 106366.
19 Allen A J, Thomas J J, Jennings H M. Nature Materials, 2007, 6(4), 311.
20 Chiang Y, Chang S W. Cement and Concrete Research, 2021, 140, 106268.
21 Hou D, Zhu Y, Lu Y, et al. Materials Chemistry and Physics, 2014, 146(3), 503.
22 Mishra R K, Mohamed A K, Cement and Concrete Research, 2017, 102, 68.
23 Shahsavari R, Pellenq R J M, Ulm F J. Physical Chemistry Chemical Physics, 2011, 13(3), 1002.
24 Hou D, Ma H, Yu Z, et al. Acta Materialia, 2014, 67, 81.
25 Bonnaud P A, Manzano H, Miura R, et al. Journal of Physical Chemistry C, 2016, 120(21), 11465.
26 Du D X. Theoretical studies on the effective properties of multiphase materials. Ph. D. Thesis, Tsinghua University, China, 2000 (in Chinese).
杜丹旭. 多相材料有效性质的理论研究. 博士学位论文, 清华大学, 2000.
27 Haecker C J, Garboczi E J, Bullard J W, et al. Cement and Concrete Research, 2005, 35(10), 1948.
28 Dharmawardhana C C, Misra A, Aryal S, et al. Cement and Concrete Research, 2013, 52, 123.
29 Hajilar S, Shafei B. Computational Materials Science, 2015, 101, 216.
30 Jennings H M, Bullard J W, Thomas J J, et al. Journal of Advanced Concrete Technology, 2008, 6(1), 5.
31 Bernard O, Ulm F J, Lemarchand E. Cement and Concrete Research, 2003, 33(9), 1293.
32 Zhou W L, Sun W, Chen C C, et al. Journal of Southeast University (Natural Science Edition), 2011, 41(2), 370(in Chinese).
周伟玲, 孙伟, 陈翠翠, 等. 东南大学学报(自然科学版), 2011, 41(2), 370.
33 Sun G W, Sun W, Zhang Y S, et al. Journal of Southeast University (Natural Science Edition), 2011, 41(3), 606(in Chinese).
孙国文, 孙伟, 张云升, 等. 东南大学学报(自然科学版), 2011, 41(3), 606.
34 Taylor H F W. Cement chemistry, Thomas Telford, London, 1997, pp. 55.
35 Taylor H F W. Advances in Cement Research, 1987, 1(1), 5.
36 Monteiro P J M, Chang C T. Cement and Concrete Research, 1995, 25(8), 1605.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[5] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[6] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[7] 向顺成, 郑廷祥, 高英力, 史威, 蒋震, 何彦琪, 曾维. 聚氨酯改性聚羧酸盐的合成及与水泥净浆的相互作用[J]. 材料导报, 2024, 38(21): 23040167-7.
[8] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[9] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[10] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[11] 朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
[12] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[13] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[14] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[15] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed