Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 70-74    https://doi.org/10.11896/j.issn.1005-023X.2017.022.014
  材料研究 |
粉末熔池耦合活性TIG焊接方法
黄勇,赵文强,张利尧
兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Powder Pool Coupled Activating TIG Welding Method
HUANG Yong, ZHAO Wenqiang, ZHANG Liyao
State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals,School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 726KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出了一种新型活性焊接方法——粉末熔池耦合活性TIG焊(Powder pool coupled activating TIG welding,PPCA-TIG)。该方法采用双层气体进行焊接,内层利用惰性气体保护钨极,外层通过自动送粉装置将活性剂粉末随保护气体送入电弧-熔池区域,增加熔深,提高焊接效率,实现机械化自动化焊接。针对SUS304不锈钢进行了直流正接PPCA-TIG表面熔深,通过与传统TIG焊对比,研究了SiO2活性剂对电弧形态、焊缝成形、组织和力学性能的影响。结果表明:SiO2能使电弧等离子体收缩、熔池金属流态改变,并且焊缝熔深能达到传统TIG焊的3倍以上,焊接效率明显提高。焊缝组织主要为奥氏体和铁素体,铁素体形态以骨架状为主。焊缝抗拉强度略低于母材,但相比传统TIG焊,焊缝屈服强度略有提高,其焊缝低温冲击韧性达到了传统TIG焊的96.8%,表现出了良好的力学性能。同时,采用该方法可有效避免活性剂粉末对钨极的污染。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄勇
赵文强
张利尧
关键词:  SiO2  粉末熔池耦合活性TIG焊  电弧  焊缝成形  微观组织  力学性能    
Abstract: The present work aims to develop and display a novel activating welding method, i.e. powder pool coupled activating TIG (PPCA-TIG) welding. Amongst the PPCA-TIG welding, tungsten was protected by inner layer argon or other inert gas, meanwhile the activated flux powder mixing protective gas was transported into the outer layer of arc-molten pool area by the automatic powder feeding device to realize the aim of increasing the depth of penetration, improving the welding efficiency and welding mechanization and automatization. Based on the SUS304 stainless steel, the conventional DC TIG welding and SiO2 activated flux of DC PPCA-TIG welding were performed, and then the effect of SiO2 flux on the arc morphology, weld appearance of welding process, microstructure and the mechanical properties were studied. The results show that SiO2 can constrict the arc plasma, change the weld pool fluid flow mode and augment the depth of weld penetration to 3 times more than that of the conventional TIG welding, and the welding efficiency is obviously improved. The microstructure of the weld is mainly consist of austenite and ferrite, the ferrite morphology is mainly skeleton. Weld tensile strength is slightly lower than that of the base metal, while compared with the conventional TIG welding, it improves the yield strength slightly, and the lower temperature impact toughness of the weld is 96.8% of TIG weld, which shows favorable mechanical properties. At the same time, the PPCA-TIG method can effectively avoid the pollution on the tungsten electrode from the activated flux powder.
Key words:  SiO2    powder pool coupled activating TIG welding    arc    appearance of weld    microstructure    mechanical property
                    发布日期:  2018-05-08
ZTFLH:  TG444  
作者简介:  黄勇:男,1972年生,博士,教授,硕士研究生导师,主要研究方向为高效焊接技术E-mail:hyorhot@lut.cn
引用本文:    
黄勇,赵文强,张利尧. 粉末熔池耦合活性TIG焊接方法[J]. 材料导报编辑部, 2017, 31(22): 70-74.
HUANG Yong, ZHAO Wenqiang, ZHANG Liyao. Powder Pool Coupled Activating TIG Welding Method. Materials Reports, 2017, 31(22): 70-74.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.014  或          http://www.mater-rep.com/CN/Y2017/V31/I22/70
1 Gurevich S M, Zamokov V N, Kushirenko N A. Improving the penetration of titanium alloys when they are welded by tungsten arc process[J]. Automatic Weld, 1965,18(9):1.
2 Liu Fengyao, Yang Chunli, Lin Sanbao, et al. Effect of weld microstructure on weld properties in A-TIG welding of titanium alloy[J]. Trans Nonferr Met Soc China, 2013,13(4):876.
3 Huang Yong, Wang Yanlei, Zhang Zhiguo. Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG[J]. Spectrosc Spectral Anal, 2014,34(5):1168(in Chinese).
黄勇,王艳磊,张治国.氧引入对气体熔池耦合活性TIG焊电弧的影响[J].光谱学与光谱分析,2014,34(5):1168.
4 Huang Yong, Zhang Zhiguo, Wang Yanlei. Nitrogen distribution in molten pool of gas pool coupled activating TIG welding with rapid cooling method[J]. Trans China Weld Inst, 2015,2(8):31(in Chinese).
黄勇,张治国,王艳磊.气体熔池耦合活性TIG焊熔池N 元素分布骤冷分析[J].焊接学报,2015,2(8):31.
5 Huang Yong, Guo Wei, Wang Yanlei. Effects of oxygen outer gas on the weld properties of gas pool coupled activating TIG welding[J]. Trans China Weld Inst, 2016,37(9):5(in Chinese).
黄勇,郭卫,王艳磊.外层氧气引入对GPCA-TIG焊焊缝性能的影响[J].焊接学报, 2016,37(9):5.
6 Huang Yong, Li Tao, Wang Yanlei. Gas transfer flux activating TIG welding process for aluminum alloy[J]. Trans China Weld Inst, 2014, 35(1):101(in Chinese).
黄勇,李涛,王艳磊. 铝合金气体输送活性钨极氩弧焊方法[J]. 焊接学报,2014,35(1):101.
7 Huang Yong, Yao Yuhang, Zhang Jianxiao, et al. Gas transfer flux active welding for various metallic materials[J]. J Lanzhou University of Technology, 2015, 41(5):11(in Chinese).
黄勇,姚宇航,张建晓,等. 适用于不同金属材料的气体输送活性焊接方法[J]. 兰州理工大学学报, 2015,41(5):11.
8 Huang Bensheng,Yang Jiang, Yin Wenfeng, et al. Research progress and prospect of A-TIG welding[J]. Mater Rev:Rev, 2016,30(2):77(in Chinese).
黄本生,杨江,尹文锋,等.A-TIG焊研究进展及前景展望[J].材料导报:综述篇,2016,30(2):77.
9 Simonik A G. The effect of contraction of the arc discharge upon the introduction of the eletro-negative elements[J]. Weld Prod,1976,23(3):49.
10 Heiple C R, Roper J R, Stagner R T, et al. Surface active element effects on the shape of GTA, laser and electron beam welds[J]. Weld Res Supp,1983,62(3):72.
11 Huang Yong, Fan Ding, Lin Tao, et al. Arc assisted activation TIG welding process for stainless steels[J]. Trans China Weld Inst, 2009,30(10):1(in Chinese).
黄勇, 樊丁, 林涛,等. 不锈钢电弧辅助活性TIG焊[J]. 焊接学报. 2009, 30(10):1.
12 Fujii H, Sato T, Lu S P, et al. Development of an advanced A-TIG(AA-TIG) welding method by control of marangoni convection[J].Mater Sci Eng A, 2008,495(1-2):296.
13 Fan Ding, Lin Tao, Huang Yong, et al. Arc assisted activating TIG welding process[J]. Trans China Weld Inst, 2008,29(12):1(in Chinese).
樊丁, 林涛, 黄勇,等. 电弧辅助活性TIG焊接法[J].焊接学报, 2008,29(12):1.
14 Lu Shanping, Li Dongjie, Li Dianzhong, et al. Double shielded TIG welding method[J]. Trans China Weld Inst, 2010, 31(2):21(in Chinese).
陆善平, 李冬杰, 李殿中,等. 双层气流保护TIG焊接方法[J]. 焊接学报, 2010, 31(2):21.
15 Terashima S, Bhadeshi A H K D H. Changes in toughness at low oxygen concentrations in steel weld metal[J]. Sci Technol Weld Join, 2006, 11(5):509.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[12] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[13] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[14] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[15] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed