Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 70-74    https://doi.org/10.11896/j.issn.1005-023X.2017.022.014
  材料研究 |
粉末熔池耦合活性TIG焊接方法
黄勇,赵文强,张利尧
兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Powder Pool Coupled Activating TIG Welding Method
HUANG Yong, ZHAO Wenqiang, ZHANG Liyao
State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals,School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 726KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出了一种新型活性焊接方法——粉末熔池耦合活性TIG焊(Powder pool coupled activating TIG welding,PPCA-TIG)。该方法采用双层气体进行焊接,内层利用惰性气体保护钨极,外层通过自动送粉装置将活性剂粉末随保护气体送入电弧-熔池区域,增加熔深,提高焊接效率,实现机械化自动化焊接。针对SUS304不锈钢进行了直流正接PPCA-TIG表面熔深,通过与传统TIG焊对比,研究了SiO2活性剂对电弧形态、焊缝成形、组织和力学性能的影响。结果表明:SiO2能使电弧等离子体收缩、熔池金属流态改变,并且焊缝熔深能达到传统TIG焊的3倍以上,焊接效率明显提高。焊缝组织主要为奥氏体和铁素体,铁素体形态以骨架状为主。焊缝抗拉强度略低于母材,但相比传统TIG焊,焊缝屈服强度略有提高,其焊缝低温冲击韧性达到了传统TIG焊的96.8%,表现出了良好的力学性能。同时,采用该方法可有效避免活性剂粉末对钨极的污染。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄勇
赵文强
张利尧
关键词:  SiO2  粉末熔池耦合活性TIG焊  电弧  焊缝成形  微观组织  力学性能    
Abstract: The present work aims to develop and display a novel activating welding method, i.e. powder pool coupled activating TIG (PPCA-TIG) welding. Amongst the PPCA-TIG welding, tungsten was protected by inner layer argon or other inert gas, meanwhile the activated flux powder mixing protective gas was transported into the outer layer of arc-molten pool area by the automatic powder feeding device to realize the aim of increasing the depth of penetration, improving the welding efficiency and welding mechanization and automatization. Based on the SUS304 stainless steel, the conventional DC TIG welding and SiO2 activated flux of DC PPCA-TIG welding were performed, and then the effect of SiO2 flux on the arc morphology, weld appearance of welding process, microstructure and the mechanical properties were studied. The results show that SiO2 can constrict the arc plasma, change the weld pool fluid flow mode and augment the depth of weld penetration to 3 times more than that of the conventional TIG welding, and the welding efficiency is obviously improved. The microstructure of the weld is mainly consist of austenite and ferrite, the ferrite morphology is mainly skeleton. Weld tensile strength is slightly lower than that of the base metal, while compared with the conventional TIG welding, it improves the yield strength slightly, and the lower temperature impact toughness of the weld is 96.8% of TIG weld, which shows favorable mechanical properties. At the same time, the PPCA-TIG method can effectively avoid the pollution on the tungsten electrode from the activated flux powder.
Key words:  SiO2    powder pool coupled activating TIG welding    arc    appearance of weld    microstructure    mechanical property
发布日期:  2018-05-08
ZTFLH:  TG444  
作者简介:  黄勇:男,1972年生,博士,教授,硕士研究生导师,主要研究方向为高效焊接技术E-mail:hyorhot@lut.cn
引用本文:    
黄勇,赵文强,张利尧. 粉末熔池耦合活性TIG焊接方法[J]. 材料导报编辑部, 2017, 31(22): 70-74.
HUANG Yong, ZHAO Wenqiang, ZHANG Liyao. Powder Pool Coupled Activating TIG Welding Method. Materials Reports, 2017, 31(22): 70-74.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.014  或          https://www.mater-rep.com/CN/Y2017/V31/I22/70
1 Gurevich S M, Zamokov V N, Kushirenko N A. Improving the penetration of titanium alloys when they are welded by tungsten arc process[J]. Automatic Weld, 1965,18(9):1.
2 Liu Fengyao, Yang Chunli, Lin Sanbao, et al. Effect of weld microstructure on weld properties in A-TIG welding of titanium alloy[J]. Trans Nonferr Met Soc China, 2013,13(4):876.
3 Huang Yong, Wang Yanlei, Zhang Zhiguo. Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG[J]. Spectrosc Spectral Anal, 2014,34(5):1168(in Chinese).
黄勇,王艳磊,张治国.氧引入对气体熔池耦合活性TIG焊电弧的影响[J].光谱学与光谱分析,2014,34(5):1168.
4 Huang Yong, Zhang Zhiguo, Wang Yanlei. Nitrogen distribution in molten pool of gas pool coupled activating TIG welding with rapid cooling method[J]. Trans China Weld Inst, 2015,2(8):31(in Chinese).
黄勇,张治国,王艳磊.气体熔池耦合活性TIG焊熔池N 元素分布骤冷分析[J].焊接学报,2015,2(8):31.
5 Huang Yong, Guo Wei, Wang Yanlei. Effects of oxygen outer gas on the weld properties of gas pool coupled activating TIG welding[J]. Trans China Weld Inst, 2016,37(9):5(in Chinese).
黄勇,郭卫,王艳磊.外层氧气引入对GPCA-TIG焊焊缝性能的影响[J].焊接学报, 2016,37(9):5.
6 Huang Yong, Li Tao, Wang Yanlei. Gas transfer flux activating TIG welding process for aluminum alloy[J]. Trans China Weld Inst, 2014, 35(1):101(in Chinese).
黄勇,李涛,王艳磊. 铝合金气体输送活性钨极氩弧焊方法[J]. 焊接学报,2014,35(1):101.
7 Huang Yong, Yao Yuhang, Zhang Jianxiao, et al. Gas transfer flux active welding for various metallic materials[J]. J Lanzhou University of Technology, 2015, 41(5):11(in Chinese).
黄勇,姚宇航,张建晓,等. 适用于不同金属材料的气体输送活性焊接方法[J]. 兰州理工大学学报, 2015,41(5):11.
8 Huang Bensheng,Yang Jiang, Yin Wenfeng, et al. Research progress and prospect of A-TIG welding[J]. Mater Rev:Rev, 2016,30(2):77(in Chinese).
黄本生,杨江,尹文锋,等.A-TIG焊研究进展及前景展望[J].材料导报:综述篇,2016,30(2):77.
9 Simonik A G. The effect of contraction of the arc discharge upon the introduction of the eletro-negative elements[J]. Weld Prod,1976,23(3):49.
10 Heiple C R, Roper J R, Stagner R T, et al. Surface active element effects on the shape of GTA, laser and electron beam welds[J]. Weld Res Supp,1983,62(3):72.
11 Huang Yong, Fan Ding, Lin Tao, et al. Arc assisted activation TIG welding process for stainless steels[J]. Trans China Weld Inst, 2009,30(10):1(in Chinese).
黄勇, 樊丁, 林涛,等. 不锈钢电弧辅助活性TIG焊[J]. 焊接学报. 2009, 30(10):1.
12 Fujii H, Sato T, Lu S P, et al. Development of an advanced A-TIG(AA-TIG) welding method by control of marangoni convection[J].Mater Sci Eng A, 2008,495(1-2):296.
13 Fan Ding, Lin Tao, Huang Yong, et al. Arc assisted activating TIG welding process[J]. Trans China Weld Inst, 2008,29(12):1(in Chinese).
樊丁, 林涛, 黄勇,等. 电弧辅助活性TIG焊接法[J].焊接学报, 2008,29(12):1.
14 Lu Shanping, Li Dongjie, Li Dianzhong, et al. Double shielded TIG welding method[J]. Trans China Weld Inst, 2010, 31(2):21(in Chinese).
陆善平, 李冬杰, 李殿中,等. 双层气流保护TIG焊接方法[J]. 焊接学报, 2010, 31(2):21.
15 Terashima S, Bhadeshi A H K D H. Changes in toughness at low oxygen concentrations in steel weld metal[J]. Sci Technol Weld Join, 2006, 11(5):509.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed