Abstract: Based on the CAFE method (Cellular automaton-finite element model), the microstructure of a GCr15 bearing steel ingot produced by the electroslag remelting was simulated by using ProCAST to analyze the grain growth process. The simulation has obtained the shape of the molten pool and the distribution of the crystal region of the electroslag steel ingot, and analyzed the effect of different process parameters on the shape of the molten pool and the solidification microstructure. The depth of the molten pool became deeper and deeper as the solid phase zone of ingot expanded. When the ingot reached a certain height, the depth of the molten pool and the direction of grain growth no longer changed. The results show that the greater the cooling strength of the mold, the lower the temperature of the molten pool and the smaller the ratio of molten pool depth to ingot radius (h/R), and the average grain size increases and the number of columnar crystals increases; the higher the temperature of the slag pool, the larger the value of h/R, the larger the average grain size. The remelting speed is the most significant influencing factor. With the melting speed increasing, the value of h/R increases significantly, and the size and number of columnar crystals are larger. After the solidification structure observation experiment on the ingot, it is found that the simulation results are in good agreement with the experimental results.
吕斌, 李志强, 杨智勇, 刘小龙, 李卫京, 韩建民. 电渣重熔工艺对GCr15轴承钢凝固组织的影响[J]. 材料导报, 2021, 35(24): 24134-24141.
LYU Bin, LI Zhiqiang, YANG Zhiyong, LIU Xiaolong, LI Weijing, HAN Jianmin. Effect of ESR Process on the Solidification Structure of GCr15 Bearing Steel. Materials Reports, 2021, 35(24): 24134-24141.
1 Kharicha A, Karimi-Sibaki E, Wu M, et al. Steel Research Internatio-nal, 2018, 89(1),1. 2 Bi Y R. Hot Working Technology, 2020, 49(20),132(in Chinese). 毕艳茹. 热加工工艺, 2020, 49(20),132,. 3 Hoyle G. Electroslag process principles and practice, Applied Science Press, UK, 1983. 4 Zhang H, Zhou X L, Fan Y J, et al. Materials Review B:Research Papers, 2015, 29(7),140,(in Chinese). 张浩, 周晓龙, 樊勇军, 等. 材料导报:研究篇, 2015, 29(7),140. 5 Du G. Research on carbide control in GCr15 bearing steel based on ESR. Ph.D. Thesis, University of Science and Technology Beijing, China, 2018(in Chinese). 杜刚. 基于电渣重熔GCr15轴承钢中碳化物控制的研究. 博士学位论文, 北京科技大学, 2018. 6 Deng N Y, Shi X F, Chen J S, et al. Chinese Journal of Engineering, 2020, 42(4),516(in Chinese). 邓南阳, 施晓芳, 陈佳顺, 等. 工程科学学报, 2020, 42(4),516. 7 Cao J H, Hou Z B, Guo D W, et al. Journal of Iron Steel Research, 2019, 31(3),286(in Chinese). 曹江海, 侯自兵, 郭东伟, 等. 钢铁研究学报, 2019, 31(3),286. 8 Paton B E, Medovar L B. Steel in Translation, 2008, 38(12),1028. 9 Kharicha A, Sibaki E K, Bohacek J, et al. Materials Science and Engineering, 2016, 143(1),12. 10 Fezi K, Yanke J, Krane M J M. Metallurgical and Materials Transactions B, 2015, 46(2), 766. 11 Zhang H, Lei H, Geng D Q, et al. Industrial Heating, 2013, 42(6),42(in Chinese). 张赫, 雷洪, 耿佃桥, 等. 工业加热, 2013, 42(6),42. 12 Fraser M E, Mitchell A. Ironmaking and Steelmaking,1976,3(5),279. 13 Reza A M, Hasan M, Guthrie R I L. Metallurgical and Materials Tran-sactions B:Process Metallurgy and Materials Processing Science, 1995, 26(4), 731. 14 Dong Y W, Jiang Z H, Zhao H M, et al. Journal of Materials and Metallurgy, 2011,10(S1), 119(in Chinese). 董艳伍, 姜周华, 赵海明, 等. 材料与冶金学报,2011,10(S1),119. 15 Rappaz M, Gandin C A. Acta Metallurgica et Materialia, 1993, 41(2), 345. 16 Seppo L, Jyrki M, Lauri H. ISIJ International, 2006, 46(6), 914. 17 Rao L, Li X L, Geng M P, et al. Foundry, 2010, 59(6), 594(in Chinese). 饶磊, 李小龙, 耿茂鹏, 等. 铸造, 2010, 59(6), 594. 18 Fu T L, Wang Z D, Yuan G, et al. Steel Rolling, 2010, 27(1), 11(in Chinese). 付天亮, 王昭东, 袁国, 等. 轧钢, 2010, 27(1), 11. 19 Han H Q, Hu J P, Wang Q. Iron and Steel, 2014, 49(3), 55(in Chinese). 韩会全,胡建平, 王强. 钢铁, 2014, 49(3), 55. 20 Wang Z X, Li Q, Wang L. Rare Metal Materials and Engineering, 2018, 47(12),3579.