Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24134-24141    https://doi.org/10.11896/cldb.20060203
  金属与金属基复合材料 |
电渣重熔工艺对GCr15轴承钢凝固组织的影响
吕斌, 李志强, 杨智勇, 刘小龙, 李卫京, 韩建民
北京交通大学机械与电子控制工程学院,北京 100044
Effect of ESR Process on the Solidification Structure of GCr15 Bearing Steel
LYU Bin, LI Zhiqiang, YANG Zhiyong, LIU Xiaolong, LI Weijing, HAN Jianmin
College of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China
下载:  全 文 ( PDF ) ( 8536KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于CAFE法(元胞自动机-有限元模型),采用ProCAST对电渣重熔方法生产的GCr15轴承钢钢锭的微观组织进行数值模拟,得到了电渣钢锭的晶粒生长过程、熔池形状变化和晶区分布情况,并分析了不同的工艺参数对熔池形状以及凝固组织的影响。熔池深度随着钢锭固相区的扩展而变得越来越深,当钢锭长到一定高度,熔池深度和晶粒生长方向均不再变化。研究结果表明:结晶器冷却强度越大,熔池温度越低,熔池深度与钢锭半径之比h/R越小,而晶粒平均尺寸增大且柱状晶越多;渣池温度越高,h/R越大,晶粒平均尺寸增大;重熔速度是最显著的影响因素,熔速增大,h/R显著增大,柱状晶尺寸增大且数量增多。经过对电渣锭的凝固组织观察试验发现,模拟结果与试验结果有较好的一致性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕斌
李志强
杨智勇
刘小龙
李卫京
韩建民
关键词:  元胞自动机-有限元模型(CAFE)  电渣重熔  GCr15轴承钢  金属熔池  微观组织    
Abstract: Based on the CAFE method (Cellular automaton-finite element model), the microstructure of a GCr15 bearing steel ingot produced by the electroslag remelting was simulated by using ProCAST to analyze the grain growth process. The simulation has obtained the shape of the molten pool and the distribution of the crystal region of the electroslag steel ingot, and analyzed the effect of different process parameters on the shape of the molten pool and the solidification microstructure. The depth of the molten pool became deeper and deeper as the solid phase zone of ingot expanded. When the ingot reached a certain height, the depth of the molten pool and the direction of grain growth no longer changed. The results show that the greater the cooling strength of the mold, the lower the temperature of the molten pool and the smaller the ratio of molten pool depth to ingot radius (h/R), and the average grain size increases and the number of columnar crystals increases; the higher the temperature of the slag pool, the larger the value of h/R, the larger the average grain size. The remelting speed is the most significant influencing factor. With the melting speed increasing, the value of h/R increases significantly, and the size and number of columnar crystals are larger. After the solidification structure observation experiment on the ingot, it is found that the simulation results are in good agreement with the experimental results.
Key words:  cellular automaton-finite element model (CAFE)    electroslag remelting    GCr15 bearing steel    metal molten pool    microstructure
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  U270.4+1  
通讯作者:  lizhq@bjtu.edu.cn   
作者简介:  吕斌,于2018年在北京交通大学车辆工程专业攻读硕士学位。研究方向主要是高铁用轴承钢的铸造工艺与质量性能的关系研究。李志强,北京交通大学机电学院,博士,讲师。从事轨道车辆零部件材料-结构-工艺协同设计、服役及失效行为等方面研究工作。获批专利9项、发表论文10余篇。
引用本文:    
吕斌, 李志强, 杨智勇, 刘小龙, 李卫京, 韩建民. 电渣重熔工艺对GCr15轴承钢凝固组织的影响[J]. 材料导报, 2021, 35(24): 24134-24141.
LYU Bin, LI Zhiqiang, YANG Zhiyong, LIU Xiaolong, LI Weijing, HAN Jianmin. Effect of ESR Process on the Solidification Structure of GCr15 Bearing Steel. Materials Reports, 2021, 35(24): 24134-24141.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060203  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24134
1 Kharicha A, Karimi-Sibaki E, Wu M, et al. Steel Research Internatio-nal, 2018, 89(1),1.
2 Bi Y R. Hot Working Technology, 2020, 49(20),132(in Chinese).
毕艳茹. 热加工工艺, 2020, 49(20),132,.
3 Hoyle G. Electroslag process principles and practice, Applied Science Press, UK, 1983.
4 Zhang H, Zhou X L, Fan Y J, et al. Materials Review B:Research Papers, 2015, 29(7),140,(in Chinese).
张浩, 周晓龙, 樊勇军, 等. 材料导报:研究篇, 2015, 29(7),140.
5 Du G. Research on carbide control in GCr15 bearing steel based on ESR. Ph.D. Thesis, University of Science and Technology Beijing, China, 2018(in Chinese).
杜刚. 基于电渣重熔GCr15轴承钢中碳化物控制的研究. 博士学位论文, 北京科技大学, 2018.
6 Deng N Y, Shi X F, Chen J S, et al. Chinese Journal of Engineering, 2020, 42(4),516(in Chinese).
邓南阳, 施晓芳, 陈佳顺, 等. 工程科学学报, 2020, 42(4),516.
7 Cao J H, Hou Z B, Guo D W, et al. Journal of Iron Steel Research, 2019, 31(3),286(in Chinese).
曹江海, 侯自兵, 郭东伟, 等. 钢铁研究学报, 2019, 31(3),286.
8 Paton B E, Medovar L B. Steel in Translation, 2008, 38(12),1028.
9 Kharicha A, Sibaki E K, Bohacek J, et al. Materials Science and Engineering, 2016, 143(1),12.
10 Fezi K, Yanke J, Krane M J M. Metallurgical and Materials Transactions B, 2015, 46(2), 766.
11 Zhang H, Lei H, Geng D Q, et al. Industrial Heating, 2013, 42(6),42(in Chinese).
张赫, 雷洪, 耿佃桥, 等. 工业加热, 2013, 42(6),42.
12 Fraser M E, Mitchell A. Ironmaking and Steelmaking,1976,3(5),279.
13 Reza A M, Hasan M, Guthrie R I L. Metallurgical and Materials Tran-sactions B:Process Metallurgy and Materials Processing Science, 1995, 26(4), 731.
14 Dong Y W, Jiang Z H, Zhao H M, et al. Journal of Materials and Metallurgy, 2011,10(S1), 119(in Chinese).
董艳伍, 姜周华, 赵海明, 等. 材料与冶金学报,2011,10(S1),119.
15 Rappaz M, Gandin C A. Acta Metallurgica et Materialia, 1993, 41(2), 345.
16 Seppo L, Jyrki M, Lauri H. ISIJ International, 2006, 46(6), 914.
17 Rao L, Li X L, Geng M P, et al. Foundry, 2010, 59(6), 594(in Chinese).
饶磊, 李小龙, 耿茂鹏, 等. 铸造, 2010, 59(6), 594.
18 Fu T L, Wang Z D, Yuan G, et al. Steel Rolling, 2010, 27(1), 11(in Chinese).
付天亮, 王昭东, 袁国, 等. 轧钢, 2010, 27(1), 11.
19 Han H Q, Hu J P, Wang Q. Iron and Steel, 2014, 49(3), 55(in Chinese).
韩会全,胡建平, 王强. 钢铁, 2014, 49(3), 55.
20 Wang Z X, Li Q, Wang L. Rare Metal Materials and Engineering, 2018, 47(12),3579.
[1] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[2] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[3] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[4] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[5] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[6] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[7] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[8] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[9] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[10] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[11] 罗军明, 谢娟, 徐吉林, 邓莉萍. 镀铜石墨烯增强钛基复合材料的组织及性能研究[J]. 材料导报, 2021, 35(22): 22098-22103.
[12] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[13] 王超, 谢志雄, 罗平, 陈琪, 肖述广, 董仕节, 解剑英. 0.3 mm厚316奥氏体不锈钢的高频感应焊接技术[J]. 材料导报, 2021, 35(22): 22132-22136.
[14] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[15] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed