Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22125-22131    https://doi.org/10.11896/cldb.20070232
  金属与金属基复合材料 |
激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响
季文彬1,2, 徐立奎1,2, 戴士杰1,2, 张争艳2
1 河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津 300130
2 河北工业大学机械工程学院,天津 300130
Effect of Process Parameters on Hardness and Microstructure of 316L Stainless Steel Manufactured by Selective Laser Melting
JI Wenbin1,2, XU Likui1,2, DAI Shijie1,2, ZHANG Zhengyan2
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
2 School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
下载:  全 文 ( PDF ) ( 5062KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光选区熔化(Selective laser melting,SLM)技术能够制备复杂的一体化空间构件,是金属增材制造的主要方法之一。然而,目前SLM技术仍存在一些问题,如工艺参数对性能的影响规律复杂等,这极大地限制了SLM技术的推广和应用。因此,选择激光功率、扫描速度、扫描间距和相邻层之间的旋转角度四种SLM工艺参数进行分析,设计正交实验,制备了316L不锈钢材料的试样,表征了SLM成型试样的尺寸精度、相对密度和硬度,并观察其宏观结构和微观组织。以激光能量密度为因变量,研究其对成型316L不锈钢材料性能的影响,实现了多输入变量到单输入变量的降维,简化了SLM工艺参数对成型材料力学性能和微观结构的复杂影响规律。结果表明,当输入的激光能量密度在65~90 J/m3之间时,316L不锈钢的相对密度在99.6%以上;当激光功率为180 W、扫描速度为870 mm/s时,316L不锈钢的晶粒均匀,其形状近似正六边形,晶粒度为0.4 μm。SLM成型的316L不锈钢相对密度与硬度有一定的关联性,当相对密度高于99.0%时,试样的硬度较高,约为250HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季文彬
徐立奎
戴士杰
张争艳
关键词:  激光选区熔化  316L不锈钢  工艺参数  尺寸精度  微观组织    
Abstract: Complex integrated space components can be manufactured by selective laser melting (SLM) technology, which is a major method of metal additive manufacturing. However, SLM technology still has some problems, such as the complexity of influence law of process para-meters on performance etc., which greatly limits the promotion and application of SLM technology. Therefore, the four SLM process parameters of laser power, scanning speed, scanning pitch and rotation angle between adjacent layers were selected for analysis in this paper. Orthogonal experiments were designed to manufacture 316L stainless steel samples, and the dimensional accuracy, relative density and hardness of the SLM formed specimens were characterized. The macrostructure and microstructure were observed. The laser energy density was taken as the dependent variable to study the influence on the properties of 316L stainless steel material, and the dimensionality reduction from multiple input va-riables to single input variables was realized, simplifying the complex influence rules of SLM process parameters on the mechanical properties and microstructure of the molding material. The results show that the relative density of 316L stainless steel was higher than 99.6% when the input laser energy density was between 65 J/m3 and 90 J/m3. When the laser power was 180 W and the scanning speed was 870 mm/s, the grain shape of 316L stainless steel was uniform, approximately hexagonal in shape, and the grain size reached 0.4 μm. There was a certain correlation between the relative density and hardness of 316L stainless steel formed by SLM. When the relative density was higher than 99.0%, the hardness of the sample was about 250HV.
Key words:  selective laser melting    316L stainless steel    process parameters    dimensional accuracy    microstructure
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TG142  
基金资助: 国家重点研发计划项目(2019YFB1311100);国家自然科学基金(52005154;61802108);河北省自然科学基金(E2020202035;E2017202296)
通讯作者:  2017082@hebut.edu.cn   
作者简介:  季文彬,河北工业大学讲师,硕士研究生导师。2017年于山东大学机械工程学院博士研究生毕业。同年入职河北工业大学机械工程学院,主要从事增减材复合制造和高效精密加工领域的研究。
引用本文:    
季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
JI Wenbin, XU Likui, DAI Shijie, ZHANG Zhengyan. Effect of Process Parameters on Hardness and Microstructure of 316L Stainless Steel Manufactured by Selective Laser Melting. Materials Reports, 2021, 35(22): 22125-22131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070232  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22125
1 Ahmed N.Journal of Manufacturing Processes, 2019, 42, 167.
2 Huang R K, Dai N, Cheng X S. China Mechanical Engineering. 2020, 31(19), 2346(in Chinese).
黄仁凯,戴宁,程筱胜. 中国机械工程, 2020, 31(19), 2346.
3 Liu J H, Zhu H H, Ho Z H, et al. Chinese Journal of Lasers, 2017, 44(12),103(in Chinese).
刘家赫,朱海红,胡志恒,等. 中国激光, 2017, 44(12), 103.
4 Yin Y, Kang P,Xiao M Z, et al. Chinese Journal of Lasers, 2019, 46(10), 105(in Chinese).
尹燕,康平,肖梦智,等. 中国激光, 2019, 46(10), 105.
5 Yang Y, Dang M Z, Li W, et al. Journal of Mechanical Engineering, 2020, 56(3), 181(in Chinese).
杨益,党明珠,李伟,等. 机械工程学报, 2020, 56(3), 181.
6 Wang D, Chen X M, Yang Y Q, et al. Journal of Mechanical Enginee-ring, 2018, 54(17), 165(in Chinese).
王迪,陈晓敏,杨永强,等. 机械工程学报, 2018, 54(17), 165.
7 Tan X P, Tan Y J, Chow C S L, et al. Materials Science and Enginee-ring: C, 2017, 76, 1328.
8 Yang J M, Tang Y, Gu H, et al. Materials Reports A: Review Papers, 2018, 32(8), 2672(in Chinese).
杨建明,汤阳,顾海,等. 材料导报: 综述篇, 2018, 32(8), 2672.
9 Wen S, Dong A P, Lu Y L, et al. Acta Metallurgica Sinica, 2018, 54(3), 393(in Chinese).
文舒,董安平,陆燕玲,等. 金属学报. 2018, 54(3), 393.
10 Geng Y X, Fan S M, Jian J L, et al. Acta Metallurgica Sinica, 2020, 56(6), 821(in Chinese).
耿遥祥,樊世敏,简江林,等. 金属学报, 2020, 56(6), 821.
11 Liu W, Li N, Zhou B, et al. Journal of Mechanical Engineering, 2019, 55(20), 128(in Chinese).
刘伟,李能,周标,等. 机械工程学报, 2019, 55(20), 128.
12 Liu G, Zhou Q Y, Yang H W, et al. Materials Reports A: Review Papers, 2020, 34(6), 11076(in Chinese).
刘广,周溯源,杨海威,等. 材料导报:综述篇, 2020, 34(6), 11076.
13 Cook P S, Murphy A B.Additive Manufacturing, 2020, 31, 100909.
14 Shi L, Lei L M, Wang W, et al. Journal of Materials Engineering, 2020, 48(6), 148(in Chinese).
石磊,雷力明,王威,等. 材料工程, 2020, 48(6), 148.
15 Chen X B, Ge X, Zhu Y, et al. Journal of Mechanical Engineering, 2018, 54(3), 63(in Chinese).
陈旭斌,葛翔,祝毅,等. 机械工程学报, 2018, 54(3), 63.
16 Zhang D H, Xie G Z, Li Y Q,et al. Applied Optical, 2015,54(25),7534.
17 Ni C Y, Zhang C D, Liu T T, et al. Chinese Journal of Lasers, 2018, 45(7), 72(in Chinese).
倪辰旖,张长东,刘婷婷,等. 中国激光, 2018, 45(7), 72.
18 Nagarajan B, Hu Z, Song X, et al. Engineering, 2019, 5(4), 702.
19 Zhang D H, Li Y Q, Xie G Z, et al. Modern Physics Letters B,2019,33(5),1950050-01-19.
20 Takata N, Kodaira H, Suzuki A, et al. Materials Characterization, 2018, 143, 18.
21 Khorasani A, Gibson I, Awan U S, et al. Additive Manufacturing, 2019, 25, 176.
22 Sun D, Gu D, Lin K, et al. Powder Technology, 2019, 342, 371.
23 Nguyen Q B, Zhu Z, Ng F L, et al. Journal of Materials Science & Technology, 2019, 35(2), 388.
24 Zhang Y J, Song B, Zhao X, et al. Journal of Mechanical Engineering, 2018, 54(13), 170(in Chinese).
章媛洁,宋波,赵晓,等. 机械工程学报, 2018, 54(13), 170.
25 Liu Y, Li Z Y, Zhang X G, et al. Materials for Mechanical Engineering, 2018, 42(5), 40(in Chinese).
刘艳,李宗义,张晓刚,等. 机械工程材料, 2018, 42(5), 40.
26 Maconachie T, Leary M, Lozanovski B, et al. Materials & Design, 2019, 183, 108137.
27 Murr L E, Gaytan S M, Ramirez D A, et al. Journal of Materials Science & Technology, 2012, 28(1), 1.
28 Huang M J, Yang Y C, Feng S C. Surface Technology, 2020, 49(1), 221(in Chinese).
黄明吉,杨颖超,冯少川. 表面技术, 2020, 49(1), 221.
[1] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[2] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[3] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[4] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[5] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[6] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[7] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[8] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[9] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[10] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[11] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[12] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[13] 罗军明, 谢娟, 徐吉林, 邓莉萍. 镀铜石墨烯增强钛基复合材料的组织及性能研究[J]. 材料导报, 2021, 35(22): 22098-22103.
[14] 王超, 谢志雄, 罗平, 陈琪, 肖述广, 董仕节, 解剑英. 0.3 mm厚316奥氏体不锈钢的高频感应焊接技术[J]. 材料导报, 2021, 35(22): 22132-22136.
[15] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed