Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22132-22136    https://doi.org/10.11896/cldb.20090158
  金属与金属基复合材料 |
0.3 mm厚316奥氏体不锈钢的高频感应焊接技术
王超1, 谢志雄1, 罗平1, 陈琪1, 肖述广1, 董仕节1,2, 解剑英3
1 湖北工业大学材料与化学工程学院,武汉 430068
2 湖北经济学院,武汉 430205
3 武汉博金新材料科技有限公司,武汉 430058
The High Frequency Induction Welding Technology of 316 Austenitic Stainless Steel with 0.3 mm Thickness
WANG Chao1, XIE Zhixiong1, LUO Ping1, CHEN Qi1, XIAO Shuguang1, DONG Shijie1,2, XIE Jianying3
1 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
2 Hubei University of Economics,Wuhan 430205, China
3 Wuhan Borkin New Materials Technology Co., Ltd, Wuhan 430058, China
下载:  全 文 ( PDF ) ( 5361KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用一种高速的高频感应焊接技术焊接壁厚为0.3 mm的316奥氏体不锈钢钢管,研究了不同高频感应焊接参数下焊管的接头宏观形貌、焊缝组织和力学性能。结果表明:在高频感应焊接条件下,为了保证薄壁316奥氏体不锈钢具有良好的焊缝成形性,焊缝内外两侧形成的毛刺必须连续一致,并且热输入量与挤压量要匹配,当热输入增大时,挤压量应减少,当挤压量增加时,热输入应降低。焊接热输入为49.5 kJ/m,挤压量为0.36 mm时,接头宏观表面成形良好,焊缝区晶粒细小。焊缝显微组织以奥氏体+δ铁素体为主,焊缝硬度可达300HV以上,与母材基体硬度(236HV)相比显著增加,这是焊缝晶粒得到细化的结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王超
谢志雄
罗平
陈琪
肖述广
董仕节
解剑英
关键词:  薄壁316不锈钢  高频感应焊接  微观组织  焊接工艺    
Abstract: Ahigh-speed high-frequency induction welding technology was used to weld a 316 austenitic stainless steel pipe with a wall thickness of 0.3 mm, and themacroscopic morphology, weld structure and mechanical properties of welded pipe joints under different high-frequency induction welding parameters were studied. The results show that in order to ensure the good weld formability of thin-walled 316 austenitic stainless steel under high-frequency induction welding conditions, the burrs formed on both sides of the weld must be continuous and consistent, and the heat input and extrusion must match, when the heat input increases, the amount of extrusion should decrease, and when the amount of extrusion increases, the heat input should decrease. When the welding heat input is 49.5 KJ/m and the extrusion amount is 0.36mm, the macroscopic surface of the joint is well formed and the grains in the weld zone are fine. The microstructure of the weld is dominated by austenite and δ-ferrite, and the weld hardness can reach more than 300HV, which is significantly increased compared with the base metal matrix hardness (236HV), which is the result of the refinement of weld grains.
Key words:  thin-walled 316 stainless austenitic steel    high frequency induction welding    microstructure    welding technology
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金(51771071)
通讯作者:  xzx@hbut.edu.cn   
作者简介:  王超,2018年6月毕业于沈阳大学,获得工学学士学位。现为湖北工业大学材料与化学工程学院硕士研究生,在董仕节教授、谢志雄老师、罗平老师的指导下进行研究。目前的主要研究领域为薄壁316奥氏体不锈钢的高频感应焊接技术。谢志雄,工学博士,硕士研究生导师,湖北工业大学材料成型及控制工程系副主任,2012 年6 月于上海交通大学材料加工工程专业获工学博士学位,迄今发表论文20 余篇,其中SCI/EI 收录论文15 余篇,主持和参与湖北省自然科学基金项目、国家自然科学基金项目,获湖北省科技进步奖三等奖和湖北省自然科学三等奖各1 项,主要从事高强、高导铜合金的制备、组织性能和强化机理,产氢铝合金的制备,产氢机理方面研究,超薄壁钛管、不锈钢管高频焊接研究。
引用本文:    
王超, 谢志雄, 罗平, 陈琪, 肖述广, 董仕节, 解剑英. 0.3 mm厚316奥氏体不锈钢的高频感应焊接技术[J]. 材料导报, 2021, 35(22): 22132-22136.
WANG Chao, XIE Zhixiong, LUO Ping, CHEN Qi, XIAO Shuguang, DONG Shijie, XIE Jianying. The High Frequency Induction Welding Technology of 316 Austenitic Stainless Steel with 0.3 mm Thickness. Materials Reports, 2021, 35(22): 22132-22136.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090158  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22132
1 Kurgan N, Varol R. Powder Technology, 2010, 201(3), 242.
2 Rosso M, Grande M A. Journal of Achievements in Materials & Manufacturing Engineering, 2007, 21(2), 97
3 Wang F, Young B, Gardner L. Journal of Constructional Steel Research, 2020, 170, 105942.
4 Gardner L. Thin-Walled Structures, 2019, 141, 208.
5 Hidiroglu M, Serce O, Karabulut H, et al. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 2018(4), 263.
6 Saha S, Mukherjee M, Pal T K. Journal of Materials Engineering & Performance, 2015, 24(3), 1125.
7 Meng X, Qin G, Bai X, et al. Welding Journal, 2016, 95(9), 331S.
8 Zhang Z S, Ning D J. Welding Technology, 1990(5), 11(in Chinese).
张则甡, 宁道俊. 焊接技术, 1990 (5), 11.
9 T U, E M. Journal of Material Science & Engineering, 2017, 6(2), 1.
10 Shi C h. Welded Pipe and Tube, 2017, 40(12), 40(in Chinese).
施春华. 焊管, 2017, 40(12), 40.
11 Zhang W, Zhao G, Fu Q. Materials Science and Engineering: A, 2018, 736, 276.
12 Hu S L. Steel Pipe, 2016, 45(4), 1(in Chinese).
胡松林. 钢管, 2016, 45(4), 1.
13 Feng D K, Tian D J. Welded Pipe and Tube, 2012, 35(2), 30(in Chinese).
冯大奎, 田道建. 焊管, 2012, 35(2), 30.
14 Bi Z Y, Yan P L, Yu H, et al. Welded Pipe and Tube, 2016, 39(8), 1(in Chinese).
毕宗岳, 严培林, 余晗, 等. 焊管, 2016, 39(8), 1.
15 Menggen B G, Ai B Q, Wang Q Y, et al. Welding & Joining, 2019(8), 57(in Chinese).
孟根巴根, 艾兵权, 王秋雨, 等. 焊接, 2019(8), 57.
16 Li D D, Yu T Y, Zeng Q J, et al. Welded Pipe and Tube, 2002 (5), 12(in Chinese).
李大东, 余腾义, 曾庆江, 等. 焊管, 2002(5), 12.
17 Kim D, Kim T, Park Y, et al. Welding Journal New York, 2007, 86(3), 71.
18 He J Y, Li Z Q, Xie J Y, et al. Welding Technology, 2009, 38(4), 51(in Chinese).
贺继有, 李志强, 解剑英, 等. 焊接技术, 2009, 38(4), 51.
19 Huang Y Y. Steel Pipe, 2000(6), 31(in Chinese).
黄友阳. 钢管, 2000 (6), 31.
20 Liu J F, Liu K W, Chen J, et al. Sichuan Metallurgy, 2013, 35(4), 59(in Chinese).
刘建芳, 刘科伟, 陈建, 等. 四川冶金, 2013, 35(4), 59.
21 Jie S Q. Welded Pipe and Tube, 2003(4), 47(in Chinese).
介升旗. 焊管, 2003(4), 47.
22 He F, Qu J S, Zhang D Y, et al. Hot Working Technology, 2010, 39(23), 179(in Chinese).
何芬, 屈金山, 张德远, 等. 热加工工艺, 2010, 39(23), 179.
23 John C L, Damian J K,Welding metallurgy and weldability of stainless steels, New Jersey: John Wiley & Sons, USA, 2005.
24 Folkhard E. Welding metallurgy of stainless steels, Springer Science & Business Media, GER, 2012.
[1] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[2] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[3] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[4] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[5] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[6] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[7] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[8] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[9] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[10] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[11] 罗军明, 谢娟, 徐吉林, 邓莉萍. 镀铜石墨烯增强钛基复合材料的组织及性能研究[J]. 材料导报, 2021, 35(22): 22098-22103.
[12] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[13] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[14] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[15] 高妞, 刘鑫旺, 吴伟峰, 白朱成, 姚俊卿, 樊自田. 耐热高熵多主元合金及其强韧化研究现状[J]. 材料导报, 2021, 35(17): 17037-17042.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed