Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20060287-8    https://doi.org/10.11896/cldb.20060287
  金属与金属基复合材料 |
金属表面复合防腐膜的制备及机理研究进展
杜娟, 李芳, 宋海鹏, 魏子明, 李香云
中国民航大学中欧航空工程师学院,天津 300300
Research Progress on Preparation and Mechanism of Composite Anticorrosive Film on Metal Surface
DU Juan, LI Fang, SONG Haipeng, WEI Ziming, LI Xiangyun
Sino-Europe Institute of Engineer ofCivil Aviation University of China (CAUC), Tianjin 300300, China
下载:  全 文 ( PDF ) ( 6524KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属腐蚀给社会发展带来了巨大的经济损失和危害,随着工业和科学技术的发展,腐蚀科学在国民经济中所占的地位越来越重要。因此金属材料的腐蚀与防护关系到整个国计民生与经济的可持续发展。众所周知,金属腐蚀过程的开始主要发生于金属与环境的界面上,因此在金属表面制备防腐膜就有可能减缓或者阻止金属腐蚀的发生,从而达到防腐蚀的目的。
在金属表面制备防腐膜可以在很大程度上阻隔金属与环境的直接接触,从而减缓化学腐蚀以及电化学腐蚀的发生。但单一的防腐膜因结构不完整、存在空隙、易脱落等缺点不能发挥长时间且有效的防护作用。在金属表面制备高性能多功能的复合膜已成为目前腐蚀与防护领域的一个研究热点。从腐蚀的角度来看,一般防腐膜可分为无机膜、有机膜和无机-有机杂化膜。近年来国内外学者在此领域进行了广泛研究并取得了很多成果。金属表面复合防腐膜在制备方法上差异较大,不同制备方法的金属基体种类、膜特征、成膜方式均不同;在性能研究方面,疏水性、抗菌性和防腐性之间并不是相互独立的,疏水性可以有效减少腐蚀物质对金属表面的腐蚀,抗菌性也可在一定程度上预防金属表面的腐蚀,这两种性能都对防腐性能有增强的效果。在一些高温、高湿环境中,非常容易滋生细菌,发生腐蚀,因此制备具有疏水性、抗菌性和防腐性能的多功能膜至关重要。本文归纳了金属表面复合膜的研究进展,分别对复合膜的制备方法、性能、机理等进行介绍,分析了金属表面复合膜未来面临的问题并展望其前景,以期为金属表面高性能且绿色环保的复合膜提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜娟
李芳
宋海鹏
魏子明
李香云
关键词:  金属腐蚀  复合防腐膜  等离子体电解氧化  缓蚀剂    
Abstract: Metal corrosion has given rise to huge economic loss and harm to social development. Corrosion science has been playing an increasingly important role in the national economy with the development of industry and science and technology. Hence, the corrosion and protection of metallic materials are closely associated with the sustainable development of economy and national welfare and the people's livelihood. It is well known that the beginning of metal corrosion process mainly takes place at the interface between metal and environment. Hence, it is possible to slow down metal corrosion or prevent it by preparing anti-corrosion film on metal surface, so that anti-corrosion is no longer beyond reach.
The preparation of anticorrosion film on metal surface can largely block the direct contact between metal and the environment, thus the occurrence and progress of chemical corrosion and electrochemical corrosion can slow down. Nonetheless, sole anticorrosion film would not be able to play a long-term and effective protective role because of incomplete structure, a presence of gap, high risk of falling off and other shortcomings. At present, the preparation of high performance and multifunctional composite films on metal surface has become a research hotspot in corrosion and protection. Considering corrosion, general anticorrosive membrane can be divided into inorganic membrane, organic membrane and inorganic - organic hybrid membrane. Recently, scholars at home and abroad have carried out extensive research in this field and made a great many achievements. In the preparation method, difference shows in film formation technology, suitable metals, characteristics of the film. They have their own advantages and disadvantages; upon performances contrast, it can be found that hydrophobicity, antimicrobial property and antiseptic property are not independent of each other, but they have a certain relationship with each other. Hydrophobicity and antimicrobial properties could enhance the effect of anti-corrosion performance. Given that high temperature and humidity environment inside the aircraft are prone to triggering off bacteria and corrosion, it is very important to prepare multifunctional membranes with hydrophobic, antibacterial and antiseptic properties.
In this paper, the research progress of composite film on metal surface has been summarized. The preparation method, properties and mechanism of the composite membrane were introduced respectively. Also, the problems and prospects of metal surface composite films in the future were analyzed. They are expected to provide reference for high performance and environmental protection composite films on metal surface.
Key words:  metal corrosion    composite anticorrosive film    PEO    corrosion inhibitor
发布日期:  2022-02-10
ZTFLH:  TG146  
  TG178.2  
基金资助: 中国民航大学实验技术创新基金项目(2021CXJJ08)
通讯作者:  dujuan247@163.com   
作者简介:  杜娟,2012年毕业于天津科技大学,获得博士学位。于2009年9月至2012年6月在清华大学联合培养学习,主要从事材料表面腐蚀与防护和腐蚀-力学耦合损伤监测的研究。
引用本文:    
杜娟, 李芳, 宋海鹏, 魏子明, 李香云. 金属表面复合防腐膜的制备及机理研究进展[J]. 材料导报, 2022, 36(3): 20060287-8.
DU Juan, LI Fang, SONG Haipeng, WEI Ziming, LI Xiangyun. Research Progress on Preparation and Mechanism of Composite Anticorrosive Film on Metal Surface. Materials Reports, 2022, 36(3): 20060287-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060287  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20060287
1 Zhang N, Xiao F, Cao Y Q, et al. Packaging Engineering, 2020, 41(3),138 (in Chinese).
张宁, 肖峰, 曹源清, 等. 包装工程, 2020,41(3),138.
2 Zhao L B, Li Q N, Hong Y P, et al. Hot Working Technology, 2016, 45(12),15 (in Chinese).
赵隆滨, 黎清宁, 洪雅萍, 等. 热加工工艺, 2016,45(12),15.
3 Luo H H,Cai Q Z,Wei B K,et al. Acta Physico-Chimica Sinica, 2008(3),481 (in Chinese).
骆海贺, 蔡启舟, 魏伯康, 等. 物理化学学报, 2008(3),481.
4 Tang Y R, Pan L H, Chang Y, et al. Surface Technology, 2015,44(2),48 (in Chinese).
唐艳茹, 潘利华, 常宇, 等. 表面技术, 2015,44(2),48.
5 Huang W X. SiCp /AZ91 magnesium-based composite micro-arc oxidation process and coating corrosion resistance. Master's Thesis, Harbin Institute of Technology, China ,2008 (in Chinese).
黄文现. SiCp /AZ91 镁基复合材料微弧氧化工艺与涂层耐腐蚀性能研究. 硕士学位论文, 哈尔滨工业大学,2008.
6 Xu J L, Xiao Q F, Lai T, et al. Materials Reports, 2018,32(2),249 (in Chinese).
徐吉林,肖奇飞,赖涛, 等. 材料导报, 2018,32(2),249.
7 Wang J P, Yu Z X, He J. Journal of Functional Materials, 1999(3),100 (in Chinese).
王金平, 俞志欣, 何捷. 功能材料,1999(3),100.
8 Li L J, Ou X T, Chen D X, et al. Corrosion Science and Protection Technology, 2009,21(2),197 (in Chinese).
李凌杰, 欧孝通, 陈德贤, 等. 腐蚀科学与防护技术,2009,21(2),197.
9 Lin Bilan, Lu Jintang. Transactions of Nonferrous Metals Society of China,2014,(8),2722.
10 Fu Junsong, Zhang Mengjie, Jin Lin, et al. Applied Surface Science,2019,470,543.
11 Wang J P, Cheng F Y, Du X F, et al. Journal of Inorganic Materials, 2018,33(6),617 (in Chinese).
王景平, 成方媛, 杜显锋, 等. 无机材料学报,2018,33(6),617.
12 Li S Y, Dong Y H, Zhou Q, et al. Corrosion & Protection, 2015,36(8),748 (in Chinese).
李思仪, 董玉华, 周琼, 等. 腐蚀与防护,2015,36(8),748.
13 Wang S C, Wang H C, Xie H H, et al. New Chemical Materials,2019,47(7),82 (in Chinese).
王世成, 王宏超, 谢泓辉, 等. 化工新型材料,2019,47(7),82.
14 Wang A P, Zhou A H. Periodical of Ocean University of China, 2020,50(3),81 (in Chinese).
王爱萍, 周爱华. 中国海洋大学学报(自然科学版),2020,50(3),81.
15 Jiang F, Zhao Y, Hu J M. Surface Technology, 2020,49(2),109 (in Chinese).
蒋帆, 赵越, 胡吉明. 表面技术,2020,49(2),109.
16 Zhou T, Li H, Cheng L, et al. Journal of Xuzhou Institute of Technology(Natural Sciences Edition), 2019,34(2),1 (in Chinese).
周涛, 李欢, 程琳, 等. 徐州工程学院学报(自然科学版),2019,34(2),1.
17 Jin D Y, Zhang X W, Fan H, et al. Fine Chemicals, 2020,37(2),412 (in Chinese).
金大钺, 张先伟, 范宏, 等. 精细化工,2020,37(2),412.
18 Wen Q C. Study on the environmental adaptability of micro-nano bacte-riostatic anticorrosive coating. Master's Thesis, Beijing University of Chemical Technology, China, 2018 (in Chinese).
温庆昶. 微纳米抑菌防腐涂层的环境适应性研究. 硕士学位论文, 北京化工大学,2018.
19 Wu Y N. Exploration of antibacterial and anticorrosive properties of composite coatings based on cuprous oxide. Master's Thesis, Huazhong University of Science and Technology, China, 2016 (in Chinese).
吴亚楠.基于氧化亚铜的复合涂层的抗菌防腐性能探究. 硕士学位论文, 华中科技大学,2016.
20 Liu J L. Preparation and antibacterial properties of in-situ grafted quaternary ammonium salt antibacterial materials. Master's Thesis, Southwest Jiaotong University, China, 2017 (in Chinese).
刘嘉玲.基于原位接枝季铵盐抗菌材料的制备及其抗菌性能研究. 硕士学位论文, 西南交通大学,2017.
21 Li S, Zhang S H, Yang B, et al. China Plastics, 2018,32(12),1 (in Chinese).
李爽, 张双红, 杨波,等. 中国塑料,2018,32(12),1.
22 Hara M, Ichino R, Okido M,et al. Surface & Coatings Technology,2003,169,679.
23 Xue S Q, Ma Y Z , Wu Y F, et al. Speciality Petrochemicals, 2018, 35(3),50 (in Chinese).
薛守庆, 马远忠, 吴义芳, 等. 精细石油化工,2018,35(3),50.
24 Feng H L, Wei Z B, Xia C F, et al. Journal of Hubei Engineering University, 2019,39(6),21 (in Chinese).
封海浪, 韦子彬, 夏彩芬, 等. 湖北工程学院学报,2019,39(6),21.
25 Gong L, Lu Y P, Yu Y. Surface Technology, 2004(6),18 (in Chinese).
宫丽, 卢燕平, 于洋. 表面技术,2004(6),18.
26 Ni A Q, Zhu K K, Wang J H. Acta Materiae Compositae Sinica, 2019, 36(11),2579 (in Chinese).
倪爱清, 朱坤坤, 王继辉. 复合材料学报,2019,36(11),2579.
27 Wang X, Shi S C, Chen Y X, et al. Materials Reports, 2016,30(S2),335 (in Chinese).
王霞, 时圣闯, 陈玉祥,等.材料导报,2016,30(S2),335.
28 Fan Y D, Guo H L, Zhang J X. In: 2018 National Academic Conference on Corrosion Electrochemistry and Test Methods. Beijing, 2018,pp.244 (in Chinese).
樊亚东, 郭华龙, 张俊喜. 2018年全国腐蚀电化学及测试方法学术交流会. 北京, 2018, pp.244.
29 Wang H F, Que Y S, Wu C C, et al. Plating & Finishing, 2015,37(7),15 (in Chinese).
汪海风, 阙永生, 吴春春, 等. 电镀与精饰,2015,37(7),15.
30 Wang H, Miao C L, Chen G R. Chemical Research and Application, 2016,28(2),239 (in Chinese).
王辉, 苗超林, 陈改荣. 化学研究与应用, 2016,28(2),239.
31 Liu Y, Zhou W, Liao J H, et al. New Chemical Materials, 2019,47(11),9 (in Chinese).
刘艺, 周玮, 缪佳辉, 等. 化工新型材料,2019,47(11),9.
32 Zhao S J, Zhang W, Deng H N, et al. Acta Physico-Chimica Sinica, 2016,32(3),723 (in Chinese).
赵胜君, 张伟, 邓会宁, 等. 物理化学学报,2016,32(3),723.
33 Wang Y J, Zhang X F, Zhang K, et al. Coating and Protection, 2016,37(9),21 (in Chinese).
王一建, 张雪芬, 张凯, 等. 涂料技术与文摘,2016,37(9),21.
34 Huang R, Shao X, Zhang K Y, et al. Paint & Coatings Industry, 2017,47(12),30 (in Chinese).
黄芮, 邵雄, 张恺宇, 等. 涂料工业, 2017,47(12),30.
35 Zhou X S, Lei Y Y, Zhang X Y, et al. Ordnance Material Science and Engineering, 2013,36(3),63 (in Chinese).
周小淞, 雷源源, 张晓燕, 等. 兵器材料科学与工程,2013,36(3),63.
36 Li Xijin, Liu Xingyang, Luan Benli. Applied Surface Science,2011,257(21),9135.
37 Alex L, Michael Z, Aleksey K, et al. Applied Surface Science,2013,264,743.
38 Dmitry V M, Sergey L S, Igor M I, et al. Applied Surface Science,2020,503,144062.
39 Wang H, Ren F, Huang C B, et al. In: The 38th Chinese Society of Chemical Engineering Inorganic Acid and Alkali Salt Academic and Technology Exchange Conference and 2018 Annual Conference Paper Collection. Hebei, 2018 (in Chinese).
王海, 任峰, 黄春波,等. 第38届中国化工学会无机酸碱盐学术与技术交流大会. 河北, 2018.
40 Tuan S H, M H H. Progress in Organic Coatings,2020,140,105478.
41 Li Yufeng, Li Jiyu, Gao Xiao hui, et al. Applied Surface Science,2018, 462,362.
42 Chen X, Wen SF, Feng T, Yuan X. Progress in Organic Coatings,2020,139, 105374.
43 Nezamdoust S, Seifzadeh D. Transactions of Nonferrous Metals Society of China,2017,27(2),352.
44 Cao X Y, Du J, Yang Z M, et al. Journal of Aeronautical Materials, 2019,39(6),20 (in Chinese).
曹翔宇, 杜娟, 杨梓铭, 等. 航空材料学报,2019,39(6),20.
45 Du J, Wei Z M, Zheng S J, et al. Journal of Materials Engineering, 2020,48(2),22 (in Chinese).
杜娟, 魏子明, 郑世辑, 等. 材料工程,2020,48(2),22.
46 Cao Z Y, Huo S J, Wang L, et al. Plating & Finishing, 2016,38(9),1 (in Chinese).
曹志源, 霍胜娟, 王雷, 等. 电镀与精饰,2016,38(9),1.
47 Xu B H, Zhu G S, Huang C, et al. Anhui Chemical Industry, 2018, 44(5),26 (in Chinese).
许宝华, 朱桂生, 黄诚, 等. 安徽化工,2018,44(5),26.
48 Yang Wenji, Li Tianqi, et al. Electro chimica Acta, 2016, 220,245.
49 Wang Yabin, Liu Zhong, et al. Applied Surface, 2015, 356(30),191.
50 Zhu Hongzheng, Yue Longfei, Zhuang Chen, et al. Surface & Coatings Technology,2016,304,76.
51 Liu Qi, Ma Ruina, Du An, et al. Applied Surface Science,2019,480,646.
52 Gazala R, Hema B, et al. Progress in Organic Coatings, 2014, 77(9),1484.
53 Peng F Z, Li C Q, et al. Jiangxi Chemical Industry, 2020(1),84 (in Chinese).
彭富忠,李长全,等. 江西化工,2020(1),84.
54 Conradi M , Kocijan A , et al. Applied Surface Science, 2014, 292,432.
55 Ko ChiLiang, Kuo YuLin, Guo JhaoYu, et al. Japanese Journal of Applied Physics,2018,58(SA) ,SAAD03.
56 Wang Z H, Zhu R, Liu B, et al. China Coatings, 2019,34(5),9 (in Chinese).
王梓恒, 朱冉, 刘斌, 等. 中国涂料,2019,34(5),9.
57 Abdolreza Mirmohseni, Maryam Azizi, Mir Saeed Seyed Dorraji. Progress in Organic Coatings,2020,139,105419.
58 Li Ji, Lin Kaidong, Luo Xiaohu, et al. Applied Surface Science,2019,480,384.
59 Liang W, Xingxing D, et al. Journal of Materials Science &Technology.2019, 9, 31.
60 Yangzhi G, Junaid A S, et al. Applied Surface Science.2016, 360, 389.
61 Qiang Yujie, Fu Shulei, Zhang Shengtao, et al. Corrosion Science,2018,140.111.
62 Yun Z, Yu Z, et al. Materials Chemistry and Physics, 2017, 192,86.
63 Shan W W. Guangzhou Chemical Industry, 2019,47(14),17 (in Chinese).
单文雯. 广州化工,2019,47(14),17.
64 Samadianfard R, Seifzadeh D, Habibi Yangjeh A, et al. Surface & Coa-tings Technology,2020,385,125400.
65 Wang Zhi, Zhang Lei, Hu Weihong, et al. Progress in Organic Coatings,2018,125,500.
66 Park J, Park M, et al. Surface & Coatings Technology, 2014, 258,62.
67 Lu Y P, Qu Z Y, Ren Y L. The Chinese Journal of Nonferrous Metals, 1999(2),111 (in Chinese).
卢燕平, 屈祖玉, 任玉苓. 中国有色金属学报,1999(2),111.
68 Deng Qi, Li Weiping, Zhu Liqun, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,558,359.
69 Qiu Shihui, Liu Gang, Li Wei, et al. Journal of Alloys and Compounds,2018,747,60.
[1] 杨帆, 丁建伟, 刘豪, 邱长军, 李胜. 液态GaIn合金对铜的腐蚀机理与防腐蚀技术研究[J]. 材料导报, 2021, 35(20): 20076-20080.
[2] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[3] 王业飞, 钱程, 杨震, 丁名臣, 王任卓. 新型喹啉季铵盐酸化缓蚀剂氯化苯甲酰甲基喹啉(PCQ)的合成及缓蚀性能[J]. 材料导报, 2019, 33(4): 699-704.
[4] 刘世丰, 曾建民. 正向电压对赤泥等离子体电解氧化层结构和耐蚀性的影响[J]. 材料导报, 2019, 33(22): 3720-3726.
[5] 杨晋辉,刘泰,陈艳雪,王满,王洪媛,刘宏斌. 聚天门冬氨酸/盐的合成、改性及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1852-1862.
[6] 郭凯, 于海龙, 唐恩凌, 王猛, 贺丽萍, 刘淑华. 钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(14): 61-66.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed