Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23040042-9    https://doi.org/10.11896/cldb.23040042
  无机非金属及其复合材料 |
烧结助剂MgO-Al2O3-SiO2-ZrO2提高管式支撑体的耐碱腐蚀性能研究
杨瑞强1, 汪永清1,2,*, 常启兵1,2, 周健儿1,2
1 景德镇陶瓷大学材料科学与工程学院,江西 景德镇 333403
2 江西省高校无机膜重点实验室,江西 景德镇 333001
Investigation of Improving the Alkali Corrosion Resistance of Tubular Support Using MgO-Al2O3-SiO2-ZrO2 as Sintering Aids
YANG Ruiqiang1, WANG Yongqing1,2,*, CHANG Qibing1,2, ZHOU Jian'er1,2
1 School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, Jiangxi, China
2 Key Laboratory of Jiangxi Universities of Inorganic membrane, Jingdezhen 333001, Jiangxi, China
下载:  全 文 ( PDF ) ( 29204KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 烧结助剂可以降低氧化铝支撑体的烧结温度从而实现陶瓷膜的低成本制备,但是会影响支撑体的耐碱腐蚀性能。本工作以MgO-Al2O3-SiO2-ZrO2为烧结助剂,通过挤出成型在1 600 ℃制备一种高铝管式支撑体,并对其耐碱腐蚀性能进行研究。结果表明:高温热碱将烧结助剂中的玻璃相腐蚀导致花瓣状MgAl2O4晶体裸露,且ZrSiO4晶体仍然钉扎在氧化铝颗粒表面和颈部,为支撑体提供了良好的耐碱腐蚀性能;静态腐蚀下的支撑体抗折强度衰减规律符合水平渐近线方程,长期腐蚀下无限接近51.94 MPa;在50 ℃碱液中以4.32 m/s的膜面流速对支撑体动态腐蚀36 h后,1 680 ℃煅烧的纯铝支撑体抗折强度仅有33.78 MPa,而高铝支撑体抗折强度仍有73.06 MPa,实现了低温制备耐碱腐蚀的高铝管式支撑体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨瑞强
汪永清
常启兵
周健儿
关键词:  烧结助剂  氧化铝  管式支撑体  碱腐蚀  低成本    
Abstract: Sintering aids can reduce the sintering temperature and realize the low-cost fabrication of Al2O3 ceramic membrane, however, it will affect the alkali corrosion resistance of Al2O3 support. In this work, the high alumina tubular support was fabricated by extrusion forming, sintered at 1 600 ℃, using MgO-Al2O3-SiO2-ZrO2 as sintering aids and its alkali corrosion resistance was researched. The results show that the flower-like crystal of MgAl2O4 in the alumina surface is exposed due to the corrosion of the glass phase in the sintering aids by the alkali solution at high temperature, meanwhile, the ZrSiO4 is still nailed on the surface and neck of the alumina particle, those crystals provide good alkali corrosion resis-tance for the support. The attenuation relationship of the support bending strength under the static corrosion conforms to the horizontal asymptotic equation, the bending strength infinitely close to 51.94 MPa under long-term corrosion. The bending strength of pure alumina support sintered at 1 680 ℃ is only 33.78 MPa after dynamic corrosion for 36 h with a membrane surface velocity of 4.32 m/s of alkali solution at 50 ℃, while the high alumina support in this work is still 73.06 MPa, which realizes the preparation of the high aluminum tubular support with great alkali corrosion resistance at low temperature.
Key words:  sintering aids    alumina    tubular support    alkali corrosion    low-cost
发布日期:  2023-09-06
ZTFLH:  TQ174  
通讯作者:  *汪永清,景德镇陶瓷大学材料科学与工程学院教授、博士研究生导师。1985年9月到景德镇陶瓷大学工作至今,2005年华南理工大学材料科学与工程专业博士毕业。目前主要从事陶瓷膜产业化制备、陶瓷膜表面纳米修饰、低膨胀耐热陶瓷、稀土尾砂资源化利用、陶瓷固体废弃物处理及资源化利用等方面的研究工作。发表论文100余篇,申请专利32项。wyq8248@126.com   
作者简介:  杨瑞强,2015年6月、2018年12月分别于景德镇陶瓷大学获得工学学士学位和硕士学位。现为景德镇陶瓷大学材料科学与工程学院博士研究生,在汪永清教授的指导下进行研究。目前主要研究领域为无机陶瓷膜的制备及其在苛刻环境废水处理中的应用。
引用本文:    
杨瑞强, 汪永清, 常启兵, 周健儿. 烧结助剂MgO-Al2O3-SiO2-ZrO2提高管式支撑体的耐碱腐蚀性能研究[J]. 材料导报, 2023, 37(S1): 23040042-9.
YANG Ruiqiang, WANG Yongqing, CHANG Qibing, ZHOU Jian'er. Investigation of Improving the Alkali Corrosion Resistance of Tubular Support Using MgO-Al2O3-SiO2-ZrO2 as Sintering Aids. Materials Reports, 2023, 37(S1): 23040042-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040042  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23040042
1 Xing W H, Gu X H. High performance membrane materials and membrane technology, Chemical Industry Press, China, 2020, pp.97 (in Chinese).
邢卫红, 顾学红. 高性能膜材料与膜技术. 化学工业出版社, 2020, pp.97.
2 Xu N P, Xing W H, Zhao Y J. Inorganic membrane separation technology and application, Chemical Industry Press, China, 2003, pp.45 (in Chinese).
徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用, 化学工业出版社, 2003, pp.45.
3 Wang Y, Ma B, Ulbricht M, et al. Water Research, 2022, 22, 119173.
4 Huang J G, Liang D H, Zhang Z, et al. Journal of the Chinese Ceramic Society, 2022, 50(6), 1582 (in Chinese).
黄吉光, 梁德华, 张 政, 等. 硅酸盐学报, 2022, 50(6), 1582.
5 Tong Z, Huang K P, Yang B W, et al. Materials Reports, 2021, 35(6), 6054 (in Chinese).
同帜, 黄开佩, 杨博文, 等. 材料导报, 2021, 35(6), 6054.
6 Tong Z, Zhang J X, Sun X J, et al. Materials Reports, 2020, 34(6), 12050 (in Chinese).
同帜, 张健需, 孙小娟, 等. 材料导报, 2020, 34(6), 12050.
7 Mouratib R, Achiou B, Krati M E, et al. Journal of the European Ceramic Society, 2020, 40, 5942.
8 Zhang X Z, Zhou J E, Jiang Y H, et al. Journal of the Chinese Ceramic Society, 2009, 37(3), 447 (in Chinese).
张小珍, 周健儿, 江瑜华, 等. 硅酸盐学报, 2009, 37(3), 447.
9 Saja S, Bouazizi A, Achiou B, et al. Journal of the European Ceramic Society, 2020, 40, 2453.
10 Nunes S P, Culfaz-Emecen P Z, Ramon G Z, et al. Journal of Membrane Science, 2020, 598, 117761.
11 Dong Y C, Wu H, Yang F L, et al. Water Research, 2022, 220, 118629.
12 Hubadillah S K, Jamalludin M R, Othman M H D, et al. Ceramics International, 2022, 48, 24157.
13 Xu M X, He Y, Liu Z H, et al. Applied Clay Science, 2019, 168, 269.
14 Wallberg O, Jönsson A S, Wimmerstedt R. Desalination, 2003, 156, 145.
15 Chen C N, Xu M X, Deng X F, et al. Applied Clay Science, 2023, 232, 106773.
16 Hu J M, Qi H, Fan Y Q, et al. Journal of the Chinese Ceramic Society, 2009, 37(11), 1818 (in Chinese).
胡锦猛, 漆虹, 范益群, 等. 硅酸盐学报, 2009, 37(11), 1818.
17 Qi H, Xing W H, Fan Y Q. Journal of the Chinese Ceramic Society, 2010, 38(2), 283 (in Chinese).
漆虹, 邢卫红, 范益群. 硅酸盐学报, 2010, 38(2), 283.
18 Qian C C, Hu K H, Shen Z, et al. Ceramics International, DOI:10. 1016/j. ceramint. 2023. 02. 118.
19 Wang X, Chang Q B, Wang Y Q, et al. China Ceramics, 2013, 49(11), 23 (in Chinese).
王霞, 常启兵, 汪永清, 等. 中国陶瓷, 2013, 49(11), 23.
20 Rashad M, Sabu U, Logesh G, et al. Separation and Purification Technology, 2019, 219, 74.
21 Ma J. Preparation and properties of the high-performance asymmetric alumina ceramic membranes and the application in oil-water separation. Ph. D. Thesis, South China University of Technology, China, 2021 (in Chinese).
马娟. 高性能非对称氧化铝陶瓷膜的制备、性能及其在油水分离中的应用. 博士学位论文, 华南理工大学, 2021.
22 Wang J H. Study on the corrosion resistance of macroporous alumina support. Master's Thesis, Nanjing University of Technology, China, 2005 (in Chinese).
王建红. 高铝多孔陶瓷支撑体耐腐蚀性能研究. 硕士学位论文, 南京工业大学, 2005.
23 Ma J, Du B, He C, et al. Advanced Science News, 2020, 22, 1901442.
24 Dong Y C, Lin B, Zhou J E, et al. Materials Characterization, 2011, 62, 409.
25 Xia Y, Shi K. Bulletin of the Chinese Ceramic Society, 2018, 37(9), 2802 (in Chinese).
夏熠, 石凯. 硅酸盐通报, 2018, 37(9), 2802.
26 Li C Q, Bi J C, Liu B L, et al. Journal of Heilongjiang University of Science & Technology, 2022, 32(6), 733 (in Chinese).
李长青, 毕建聪, 刘宝良, 等. 黑龙江科技大学学报, 2022, 32(6), 733.
27 Zhao W, Teng Y C, Zeng C S, et al. Journal of the Chinese Ceramic Society, 2009, 37(10), 1660 (in Chinese).
赵伟, 滕元成, 曾冲盛, 等. 硅酸盐学报, 2009, 37(10), 1660.
28 Ren X M, Ma B Y, Tian J L, et al. Ceramics International, 2022, 48, 32470.
29 Zhou J E, Wu J Q, Wang Y Q, et al. Journal of the Chinese Ceramic Society, 2004, 32(12), 1464 (in Chinese).
周健儿, 吴建青, 汪永清, 等. 硅酸盐学报, 2004, 32(12), 1464.
30 Zhou J E, Wu J Q, Wang Y Q, et al. Journal of Inorganic Materials, 2006(3), 215 (in Chinese).
周健儿, 吴建青, 汪永清, 等. 无机材料学报, 2006(3), 215.
31 Xu G G, Chen Z W, Zhang X Y, et al. Ceramics International, 2016, 42, 14107.
32 Dong Y C, Feng X Y, Dong D H, et al. Journal of Membrane Science, 2007, 304, 65.
33 Dele-Afolabi T T, Hannim M A A, Norkhairunnisa M, et al. Ceramics International, 2017, 12 (43), 8743.
34 Cheng Y F, Yu Y G, Peng C, et al. Ceramics International, 2020, 8 (46), 11297.
35 Li S M, Huang J G. Journal of the Chinese Ceramic Society, 2018, 46(9), 1257 (in Chinese).
李思蒙, 黄建国. 硅酸盐学报, 2018, 46(9), 1257.
36 Yu S J, Xie K, Qi H. Journal of the Chinese Ceramic Society, 2019, 47(12), 1729 (in Chinese).
郁苏俊, 谢凯, 漆虹. 硅酸盐学报, 2019, 47(12), 1729.
[1] 聂光临, 刘一军, 汪庆刚, 程科木, 吴洋, 黄玲艳, 潘利敏, 包亦望, 饶平根. 片状Al2O3增强建筑陶瓷板材的制备与性能研究[J]. 材料导报, 2023, 37(16): 22020046-7.
[2] 许乃才, 黄国勇, 史丹丹, 边绍菊, 黎四霞. 氧化铝基吸附材料制备及除氟研究进展[J]. 材料导报, 2023, 37(15): 21080098-10.
[3] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[4] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[5] 郭建新, 周芸, 汪天尧, 闫敬明, 郭路, 左孝青. Al2O3/FeCrNi复合蜂窝载体材料的制备及性能[J]. 材料导报, 2022, 36(9): 20120112-6.
[6] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[7] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[8] 张勇, 高相东, 姚佳祺, 吴永庆, 赵祥. SiO2-Al2O3气凝胶及纤维增强复合材料制备技术研究进展[J]. 材料导报, 2022, 36(23): 21030207-9.
[9] 杨小龙, 申爱琴, 刘贵勇, 蒋宜馨, 吴寒松. 考虑隧道阻燃的纳米黏土/ATH复合改性沥青优化设计[J]. 材料导报, 2022, 36(21): 20090343-8.
[10] 李军, 陈祥宝. 通用航空复合材料的发展现状与挑战[J]. 材料导报, 2022, 36(14): 21110268-6.
[11] 李过, 孙耀宁, 王国建, 代礼葵. 不同环境因素作用下玻纤/环氧乙烯基酯复合材料的冲蚀行为[J]. 材料导报, 2021, 35(16): 16160-16165.
[12] 贾玉娜, 梁可可, 焦秀玲, 陈代荣, 张剑, 吕毅, 赵英民. Al2O3-SiO2-B2O3连续纤维的制备及力学性能[J]. 材料导报, 2021, 35(14): 14025-14029.
[13] 付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
[14] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[15] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed