Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21110268-6    https://doi.org/10.11896/cldb.21110268
  高分子与聚合物基复合材料 |
通用航空复合材料的发展现状与挑战
李军1,2, 陈祥宝1,2
1 中国航发北京航空材料研究院,北京 100095
2 先进复合材料国防科技重点实验室,北京 100095
Development Status and Challenges of General Aviation Composites
LI Jun1,2, CHEN Xiangbao1,2
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 National Key Laboratory of Advanced Composites, Beijing 100095, China
下载:  全 文 ( PDF ) ( 3910KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 树脂基复合材料密度小,比强度和比模量高,疲劳性能和耐腐蚀性能好,在通用航空器的设计和制造领域获得了广泛的关注和应用,最高用量可达90%。通用飞机对复合材料的要求主要包括具备优异的力学性能、批次稳定性好、材料和制造成本低、需要适航认证等。国外通用航空发展历史较长,产业体系相对成熟,通用航空复合材料适航认证体系健全,复合材料在通用航空中得到了广泛应用。国内通用航空产业处于起步发展阶段,通用航空复合材料也使用较少,因此亟需联合国内通用航空的相关资源,完善国内通用航空复合材料鉴定程序,建立通用航空复合材料体系及其共享数据库,推动先进树脂基复合材料在通用航空领域的应用和发展。本文系统梳理了国外通用飞机树脂基复合材料的应用现状、材料体系、力学性能和成型工艺,分析了国内通用飞机树脂基复合材料的发展基础及存在的问题,并提出了相关建议,以期为树脂基复合材料在国内通用航空领域的应用发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李军
陈祥宝
关键词:  通用航空  树脂基复合材料  适航认证  材料体系  低成本制造    
Abstract: Resin matrix composites have been widely used in the design and manufacture of general aircraft due to their low density, high specific strength and modulus, good fatigue performance and corrosion resistance. The maximum usage can reach 90%. The requirements of composite materials for general aircraft mainly include excellent mechanical properties, good batch stability, low material and manufacturing cost, airworthiness certification, etc. Foreign general aviation has a long history and a relatively mature industrial system. The airworthiness certification system of composite materials for general aviation is perfect and composite materials are widely used in general aviation. The domestic general aviation industry is still in the initial stage of development, and few composite materials for general aviation are used. Therefore, it is urgent to unite the relevant resources of domestic general aviation, improve the identification procedure of general aviation composite materials and establish the general aviation composite material systems and their shared database, so as to promote the application and development of advanced resin matrix composites in the field of general aviation. In this paper, the application status, material systems, mechanical properties and processing of general aviation composites abroad were systematically reviewed. The development foundation and existing problems of domestic ge-neral aviation composite materials were analyzed, and relevant suggestions were proposed, in order to provide reference for the application and development of domestic general aviation composites.
Key words:  general aviation    resin matrix composites    airworthiness certification    material systems    low cost manufacture
发布日期:  2022-07-26
ZTFLH:  TB332  
通讯作者:  xiangbao.chen@biam.ac.cn   
作者简介:  李军,2011年1月毕业于北京航空航天大学,获得工学硕士学位。现为中国航发北京航空材料研究院工程师,主要从事树脂基复合材料科研及管理工作。
陈祥宝,材料科学家,复合材料专家,中国工程院院士。1991年毕业于比利时鲁汶大学,获工学博士学位。现为中国航发北京航空材料研究院研究员、博士研究生导师,兼任先进复合材料国防科技重点实验室主任。长期从事先进树脂基复合材料研究工作,相关成果获国家技术发明二等奖2项,国家科技进步二等奖2项,授权专利60余项,发表论文170余篇,出版著(译)作11部。
引用本文:    
李军, 陈祥宝. 通用航空复合材料的发展现状与挑战[J]. 材料导报, 2022, 36(14): 21110268-6.
LI Jun, CHEN Xiangbao. Development Status and Challenges of General Aviation Composites. Materials Reports, 2022, 36(14): 21110268-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110268  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21110268
1 Qu J W, Zhang J C, Liu M. The world general aviation aircraft, Aviation Industry Press, China, 2014, pp. 88(in Chinese).
曲景文, 张继超, 刘明. 世界通用飞机, 航空工业出版社, 2014, pp. 88.
2 Chen X B, Zhang B Y, Xing L Y. Materials China, 2009, 28(6), 2(in Chinese).
陈祥宝, 张宝艳, 邢丽英. 中国材料进展, 2009, 28(6), 2.
3 Xing L Y, Feng Z H, Bao J W, et al. Acta Materiae Compositae Sinica, 2020,37(11), 2700(in Chinese).
邢丽英, 冯志海, 包建文, 等. 复合材料学报, 2020,37(11), 2700.
4 Zhao Y, Sun P. Aeronautical Manufacturing Technology, 2011(20), 34(in Chinese).
肇研, 孙沛. 航空制造技术, 2011(20), 34.
5 Han X, Liu J J, Wang X J, et al. Dual Use Technologies & Products, 2015(4), 8(in Chinese).
韩笑, 刘建军, 王希杰, 等. 军民两用技术与产品, 2015(4), 8.
6 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1), 1(in Chinese).
杜善义. 复合材料学报, 2007, 24(1), 1.
7 Sun Y B, Li H F, Zhang B M. Aeronautical Science & Technology, 2016, 27(5), 1(in Chinese).
孙银宝, 李宏福, 张博明. 航空科学技术, 2016, 27(5), 1.
8 Guyett P R, Cardrick A W. The Aeronautical Journal, 1980, 84(834), 188.
9 Wong K, Russ C, Pickering S, et al. Science China Technological Sciences, 2017, 60, 1291.
10 Papapetrou V S, Tamijani A Y, Kim D. Journal of Aircraft, 2017, 54(2), 704.
11 Baker A A. Applied Composite Materials, 2011, 18, 337.
12 Ružek R, Běhal J. International Journal of Fatigue, 2009, 31, 1073.
13 Li K. Hi-Tech Fiber & Application, 2013, 38(2), 62(in Chinese).
李珂. 高科技纤维与应用, 2013, 38(2), 62.
14 Kosgi A, Giri S N, Raghunath A R. Journal of Aerospace Sciences and Technologies, 2019, 71(3), 315.
15 Georgiadis S, Gunnion A J, Thomson R S, et al. Composite Structure, 2008, 86, 258.
16 Chalkley P, Baker A. International Journal of Adhesion & Adhesives, 1999, 19, 121.
17 Abbott R. Comprehensive Composite Materials, 2000, 6, 165.
18 Wang B. Aeronautical Manufacturing Technology, 2013(6), 58(in Chinese).
王彬. 航空制造技术, 2013(6), 58.
19 Li B T, Zhang B Y, Xing L Y, et al. Journal of Aeronautical Materials, 2006, 26(3), 222(in Chinese).
李斌太, 张宝艳, 邢丽英, 等. 航空材料学报, 2006, 26(3), 222.
20 Zeng X X, Zhang B M, Yin S. Fiber Composites, 2016(2), 11(in Chinese).
曾小苗, 张博明, 殷莎. 纤维复合材料, 2016(2), 11.
21 Chen J, Cheng W L, Li X D. Advanced Materials Industry, 2017(12), 10(in Chinese).
陈静, 程文礼, 李贤德. 新材料产业, 2017(12), 10.
22 Centea T, Grunenfelder S R, Nutt S R. Composites: Part A, 2015, 70, 132.
23 Xing L Y. Automated manufacturing technology for advanced resin-based composite materials, Aviation Industry Press, China, 2014, pp.105(in Chinese).
邢丽英. 先进树脂基复合材料自动化制造技术, 航空工业出版社, 2014, pp.105.
24 Jiang S C, Xing L Y, Chen X B. Journal of Wuhan University of Techno-logy, 2009, 31(21), 44(in Chinese).
蒋诗才, 邢丽英, 陈祥宝. 武汉理工大学学报, 2009, 31(21), 44.
25 Lin G. Textile Science Research, 2021, 197(5), 27(in Chinese).
林刚. 纺织科学研究, 2021, 197(5), 27.
26 Chen X B. Polymer matrix composites handbook, Chemical Industry Press, China, 2004, pp.218(in Chinese).
陈祥宝. 聚合物基复合材料手册, 化学工业出版社,2004,pp.218.
27 Zhao Y, Liu H S. Journal of Materials Engineering, 2020, 48(8), 49(in Chinese).
肇研, 刘寒松. 材料工程, 2020, 48(8), 49.
28 Gong M, Zhang D J, Liu Y F, et al. Materials Reports A: Review Papers, 2020, 34(11), 21180(in Chinese).
龚明, 张代军, 刘燕峰, 等. 材料导报:综述篇, 2020, 34(11), 21180.
29 Du S Y, Guan Z D. Acta Materiae Compositae Sinica, 2008, 25(1), 1(in Chinese).
杜善义, 关志东. 复合材料学报, 2008, 25(1), 1.
30 Ma L M, Zhang J Z, Yue G Q, et al. Acta Materiae Compositae Sinica, 2015, 32(2), 317(in Chinese).
马立敏, 张嘉振,岳广全,等. 复合材料学报, 2015, 32(2), 317.
31 Chen S J. Hi-Tech Fiber & Application, 2015, 40(3), 1(in Chinese).
陈绍杰. 高科技纤维与应用, 2015, 40(3), 1.
32 Duan M G, Liu C X. Aeronautical Science & Technology, 2015, 26(3), 54(in Chinese).
段敏鸽, 刘存喜. 航空科学技术, 2015, 26(3), 54.
33 Zou T C, Feng Z Y, Chen Z C, et al. Materials Reports A: Review Papers, 2010, 24(6), 94(in Chinese).
邹田春, 冯振宇, 陈兆晨, 等. 材料导报:综述篇,2010,24(6),94.
34 Yang W F, Yan Y, Tang Q R, et al. Materials Reports B: Research Papers, 2013, 27(2), 106(in Chinese).
杨文锋, 颜影, 唐庆如, 等. 材料导报:研究篇, 2013, 27(2), 106.
[1] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[2] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[3] 种凯, 张志彬, 邹勇, 梁秀兵. 高熵非晶合金设计、制备及性能的研究进展[J]. 材料导报, 2021, 35(17): 17019-17025.
[4] 李过, 孙耀宁, 王国建, 代礼葵. 不同环境因素作用下玻纤/环氧乙烯基酯复合材料的冲蚀行为[J]. 材料导报, 2021, 35(16): 16160-16165.
[5] 郭强, 徐恒元, 何凯, 孙振萍, 李逸. 树脂基复合材料废弃物回收再利用现状及发展趋势[J]. 材料导报, 2019, 33(Z2): 634-638.
[6] 周利, 秦志伟, 刘杉, 陈伟光, 李高辉, 宋晓国, 冯吉才. 热塑性树脂基复合材料连接技术的研究进展[J]. 材料导报, 2019, 33(19): 3177-3183.
[7] 王仁宇, 关志东, 王乾, 蒋婷, 黎增山. 复合材料V型构件的固化变形预测及其工装型面设计[J]. 《材料导报》期刊社, 2017, 31(2): 130-135.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed