Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17019-17025    https://doi.org/10.11896/cldb.20120197
  高熵合金 |
高熵非晶合金设计、制备及性能的研究进展
种凯1,2, 张志彬2, 邹勇1, 梁秀兵2
1 山东大学材料与工程学院教育部材料固液结构演化与加工教育部重点实验室,济南 250061
2 军事科学院国防科技创新研究院,北京 100071
Research Progress on the Design, Preparation and Properties of High-entropy Metallic Glasses
CHONG Kai1,2, ZHANG Zhibin2, ZOU Yong1, LIANG Xiubing2
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials and Engineering, Shandong University, Jinan 250061,China
2 National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100071,China
下载:  全 文 ( PDF ) ( 2361KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵非晶合金是一种新兴的合金材料,兼具高熵合金成分特征与非晶合金结构特征,因具有优异的机械物理性能与巨大的应用潜力而受到了广泛的关注。目前高熵非晶合金的研究处于起步阶段,本文介绍了高熵非晶合金成分设计的基本依据,着重分析了高熵非晶合金的关键物理参量(混合熵ΔSmix、混合焓ΔHmix、原子错配度δ)等对高熵非晶材料组织结构的影响。当前已开发的高熵非晶合金材料体系有限,制备方法继承了非晶合金与高熵合金的制备特征,其制备手段大致可以分为:液相法、气相法以及固相法。由于其优异的热力学性能,高熵非晶合金有望通过热喷涂手段突破尺寸限制,实现大规模应用。高熵非晶合金性能的研究主要集中在力学性能、耐腐蚀性能、磁性能、非晶形成能力与热稳定性等方面。其中高熵效应对非晶形成能力的影响、高熵非晶合金的结构与热力学特性及高熵非晶合金的异常热稳定性等科学问题亟待解决。本文还展望了基于材料基因工程理念的高熵非晶合金材料体系研究及该类材料的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
种凯
张志彬
邹勇
梁秀兵
关键词:  高熵非晶  物理参数  材料体系  性能    
Abstract: High-entropy metallic glasses High-entropy metallic glasses are an emerging class of materials that show promising potential forvarious engineering applications because of their advantageous characteristics of high-entropy alloy composition and amorphous alloy structure. Owing to their excellent mechanical and physical properties, these metallic glasses have recently attracted increased attention. Research on related high-entropy metallic glasses is still in its infancy. In this study, the bases for designing the composition of high-entropy metallic glasses are introduced, and the effects of key physical parameters, such as mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), and atomic mismatch (δ), on the microstructures of high-entropy metallic glasses are comprehensively analyzed. Moreover, the current status of the study of alloys systems, preparation methods, and mechanical and physical properties is discussed and summarized. Material systems of high-entropy metallic glasses that have been developed remain limited. Current methods for preparing high-entropy metallic glasses have inherited the characteristics of those for preparing amorphous alloys and high-entropy alloys. These methods can be roughly divided into liquid-phase preparation, gas-phase preparation, and solid-phase preparation. Owing to their excellent thermodynamic properties, high-entropy amorphous materials are expected to break through the size limit through thermal spraying and achieve large-scale applications. Research on the properties of high-entropy metallic glasses mainly focuses on mechanical properties, corrosion resistance, magnetic properties, amorphous-forming ability, and thermal stability. Among these topics of interest, the influence of high-entropy on the amorphous formation, structure, thermodynamic properties, and abnormal thermal stability of high-entropy metallic glasses must be urgently resolved. Potential topics on studies of material systems of high-entropy metallic glasses on the basis of the concept of material genetic engineering are explored. The application prospects of such materials are also discussed.
Key words:  high-entropy metallic glasses    physical parameters    material systems    properties
                    发布日期:  2021-09-26
ZTFLH:  TG139+.8  
基金资助: 国家重点研发计划项目(2018YFC1902400);国家自然科学基金项目(51975582)
通讯作者:  liangxb_d@163.com   
作者简介:  种凯,2016年6月毕业于齐鲁工业大学,获得工学学士学位。现为山东大学材料科学与工程学院博士研究生。目前主要研究领域为高晶化温度高熵非晶合金。
梁秀兵,军事科学院国防科技创新研究院前沿交叉技术研究中心主任,研究员、博导。从事极端环境新型防护材料研究工作,承担了国家重点研发计划、国家863计划、国家自然科学基金、军队科研等多项重点项目。荣获国家科技进步二等奖2项、国家自然科学二等奖1项;专利授权38项;出版著作4部;发表论文200余篇。荣获中国科协求是奖、中国青年科技奖,入选教育部新世纪优秀人才支持计划、国家百千万人才工程,被遴选为2019首都科技盛典十大科技人物,并被授予有突出贡献中青年专家称号,获国务院特殊津贴。
引用本文:    
种凯, 张志彬, 邹勇, 梁秀兵. 高熵非晶合金设计、制备及性能的研究进展[J]. 材料导报, 2021, 35(17): 17019-17025.
CHONG Kai, ZHANG Zhibin, ZOU Yong, LIANG Xiubing. Research Progress on the Design, Preparation and Properties of High-entropy Metallic Glasses. Materials Reports, 2021, 35(17): 17019-17025.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120197  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17019
1 Takayama S. Journal of Materials Science, 1976, 11(1), 164.
2 Greer A L. Nature, 1993, 366(6453),303.
3 Cantor B, Chang I T H, Knight P, et al. Materials Science & Engineering A, 2004, 375-377(1-2), 213.
4 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
5 Ma L Q, Wang L M, Zhang T, et al. Materials Transactions, 2002, 43(2), 277.
6 Zhao K, Xia X X, Bai Y H, et al. Applied Physics Letters, 2011, 98(14), 141913.
7 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153.
8 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
9 Yeh J W. U.S. patent,US20020159914 A1. 2002.
10 Turnbull D. Contemporary Physics, 1969, 10(5), 473.
11 Inoue A, Zhang T. Journal of Non-Crystalline Solids, 1993, 156-158(2), 473.
12 Inoue A. Acta Materialia, 2000, 48(1), 279.
13 Wriedt H A. American Society for Metals, 1990, 2, 1739.
14 Senkov O N. Journal of Non-Crystalline Solids, 2003, 317(1), 34.
15 Senkov O N, Scott J M. Scripta Materialia, 2004, 50(4), 449.
16 Lu Z P, Liu C T. Acta Materialia, 2002, 50(13), 3501.
17 Wang Y M, Qiang J B, Wong C H, et al. Journal of Materials Research, 2003, 18(3), 642.
18 Wang D, Li Y, Sun B B, et al. Applied Physics Letters, 2004, 84(20),4029.
19 Zhang Y, Zhou Y, Lin J, et al. Advanced Engineering Materials, 2008, 10(6),534.
20 Guo S, Liu C T. Progress in Natural Science: Materials International, 2011, 21(6), 433.
21 Xu Y Q, Li Y, Zhu Z, et al. Journal of Non-Crystalline Solids, 2018, 487(1), 60.
22 Fujita T, Konno K, Zhang W, et al. Physical Review Letters, 2009, 103(7), 075502.
23 Yang X, Zhang Y. Materials Chemistry & Physics,2012,132(2-3),233.
24 Egami T. MRS Proceedings, 2002, 754(1), 30.
25 Li R. Study on amorphous phase formation in Ti-Zr-Hf-M high entropy alloys. Master’s Thesis, Shenzhen University, China, 2016(in Chinese).
李瑞. TiZrHf系多主元高熵非晶的形成研究.硕士学位论文, 深圳大学, 2016.
26 Zhang Y,Gao M C, Yeh J W, et al. High-entropy alloys, Springer International Publishing, Switzerland, 2016.
27 Wang H D, Liu J N, Xing Z G, et al. Surface Engineering, 2019, 36(1), 1.
28 Sang L, Xu Y. Journal of Non-crystalline Solids, 2020, 530, 119854.
29 Wang F, Inoue A, Kong F L, et al. Journal of Alloys and Compounds, 2018, 732, 637.
30 Takeuchi A, Gao M C, Qiao J, et al. High-entropy metallic glasses, Springer International Publishing, Switzerland, 2016.
31 Yang M, Liu X J, Wu Y, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(6), 21(in Chinese).
杨铭,刘雄军, 吴渊, 等. 中国科学:物理学 力学 天文学,2020,50(6),21.
32 Wu K, Liu C, Li Q, et al. Journal of Magnetism and Magnetic Mate-rials, 2019, 489, 165404.
33 Takeuchi A, Chen N, Wada T, et al. Intermetallics,2011,19(10),1546.
34 Gao X Q, Zhao K, Ke H B, et al. Journal of Non-Crystalline Solids, 2011, 357(21), 3557.
35 Ding H Y, Yao K F. Journal of Non-Crystalline Solids, 2013, 364, 9.
36 Jinyeon K, Seok O H, Jinwoo K, et al. Acta Materialia,2018,155,350.
37 Wei D D, Chen Q J, Gao J W, et al. Rare Metal Materials and Enginee-ring, 2009, 38(A01),80(in Chinese).
魏丹丹, 陈庆军, 高霁雯, 等. 稀有金属材料与工程, 2009, 38(A01), 80.
38 Ma X L,Zhou Y,Liu Y D. Heat Treatment Technology and Equipment, 2015, 36(4), 22(in Chinese).
马晓琳, 周勇, 刘玉栋. 热处理技术与装备, 2015, 36(4), 22.
39 Li Y, Wang S, Wang X, et al. Journal of Materials Science & Technology, 2020, 43, 32.
40 Wu L, Zhao Y, Li J J, et al. Journal of Iron and Steel Research International, 2018, 25,1.
41 Zheng S, Cai Z, Pu J, et al. Applied Surface Science, 2019, 483, 870.
42 Sheng W, Yang X, Wang C, et al. Entropy, 2016, 18(6), 226.
43 Cohen M H, Turnbull D. Nature, 1961, 189(4759), 131.
44 Gao X Q, Wang W H, Bai H Y, et al. Journal of Materials Science & Technology, 2014, 30(6), 546.
45 Takeuchi A, Wang J Q, Chen N, et al. Materials Transactions, 2013, 54(5), 776.
46 Wu J, Zhou Z Y, Yang H, et al. Journal of Alloys and Compounds, 2020, 827, 154298.
47 张显程, 程江波, 葛云云, 等. 中国专利, CN 110699629 A, 2020.
48 Xu Y, Chen Y. Chinese patent, CN201610090111.5, 2016.
徐轶,陈亚. 中国专利, CN201610090111.5, 2016.
49 Zhao S, Wang H, Xiao L, et al. Physica E: Low-dimensional Systems and Nanostructures, 2017, 94, 100.
50 Liu L, Zhu J B, Hou C, et al. Materials & Design, 2013, 46(4), 675.
51 Hsueh H T, Shen W J, Tsai M H, et al. Surface and Coatings Technology, 2012, 206(19-20), 4106.
52 Lin C H, Duh J G, Yeh J W. Surface and Coatings Technology, 2007, 201(14), 6304.
53 Lv J, Chen X M, Huang D Y, et al. Materials Reports, 2006, 20(9), 93(in Chinese).
吕俊, 陈晓闽, 黄东亚, 等. 材料导报, 2006, 20(9), 93.
54 Wang J, Zheng Z, Xu J, et al. Journal of Magnetism & Magnetic Mate-rials, 2014, 355, 58.
55 Shu C, Chen K, Yang H, et al. Physica B Condensed Matter, 2019, 571, 235.
56 Shu F Y, Liu S, Zhao H Y, et al. Journal of Alloys and Compounds, 2017, 731, 662.
57 Cheng J B, Sun B, Ge Y, et al. Surface & Coatings Technology, 2020, 402, 126321.
58 Cheng J B, Sun B, Ge Y, et al. Surface & Coatings Technology, 2020, 402, 126320.
59 Li C, Li Q, Li M, et al. Journal of Alloys & Compounds, 2019,791, 947.
60 Zhao S F, Yang N G, Ding Y H, et al. Intermetallics, 2015, 61, 47.
61 Zhao S F, Shao Y, Liu X, et al. Materials & Design, 2015, 87, 625.
62 Ding J, Inoue A, Han Y, et al. Journal of Alloys & Compounds, 2017, 696, 345.
63 Huo J, Huo L, Men H, et al. Intermetallics, 2015, 58, 31.
64 Qi T L, Li Y H, Takeuchi A, et al. Intermetallics, 2015, 66, 8.
65 Wei R, Tao J, Sun H, et al. Materials Letters, 2017, 197, 87.
66 Inoue A, Nishiyama N, Kimura H. Materials Transactions,1997,38(2),179.
67 Peker A, Johnson W L. Applied Physics Letters, 1993, 63(17), 2342.
68 Yang M, Liu X J, Ruan H H, et al. Materials Research Letters, 2018, 6(9), 495.
69 Ding H Y, Shao Y, Gong P, et al. Materials Letters,2014,125(15),151.
70 Yang M. The glass formation, thermal stability and crystallization beha-vior for Zr-Ti-Cu-Ni-(Hf, Be) high-entropy bulk metallic glasses. Ph.D. Thesis. University of Science and Technology Beijing, China, 2019(in Chinese).
杨铭. Zr-Ti-Cu-Ni-(Hf-Be)高熵非晶合金形成、热稳定性及晶化行为研究. 博士学位论文.北京科技大学, 2019.
71 Hung S B, Wang C J, Chen Y Y, et al. Surface & Coatings Technology, 2019, 375, 802.
72 Cheng C,Yeh J W. Materials Letters, 2016, 181, 223.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[3] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[4] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[5] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[6] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[7] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[8] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[9] 周横一, 钱春香, 陈燕强. GRC制品抗泛碱性能的提升及机理[J]. 材料导报, 2021, 35(Z1): 225-231.
[10] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[11] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[12] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[13] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[14] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[15] 任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed