Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3177-3183    https://doi.org/10.11896/cldb.18090151
  材料与可持续发展(二)—材料绿色制造与加工* |
热塑性树脂基复合材料连接技术的研究进展
周利1,2, 秦志伟1, 刘杉1, 陈伟光1, 李高辉1,2, 宋晓国1,2, 冯吉才1,2
1 哈尔滨工业大学(威海)山东省特种焊接技术重点实验室,威海 264209;
2 哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
Progress on Joining Technology of Thermoplastic Resin Matrix Composites
ZHOU Li1,2, QIN Zhiwei1, LIU Shan1, CHEN Weiguang1, LI Gaohui1,2, SONG Xiaoguo1,2, FENG Jicai1,2
1 Shandong Key Laboratory of Special Welding Technology, Harbin Institute of Technology (Weihai), Weihai 264209;
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001
下载:  全 文 ( PDF ) ( 1541KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热塑性树脂基复合材料具有较高的强度和刚度,以及较好的耐热性、耐腐蚀性,被广泛应用于航空航天等领域。本文主要介绍了热塑性树脂基复合材料的胶接、机械紧固和焊接技术,并对其工艺特点、连接机理、失效模式等进行了简单的分析比较。
目前使用最多、应用最广的连接树脂基复合材料的方法是胶接、机械紧固等连接方法,但是它们存在明显的缺点。对胶接而言,胶粘剂固化时间较长,胶接接头质量易受环境的影响,这在很大程度上限制了胶接技术的应用范围。机械紧固包括螺栓连接、铆钉连接等方法,但螺栓、铆钉增加了结构质量,不符合结构轻质轻量化的目标,而且由于需要钻孔导致应力集中,降低了材料的连接强度。尽管传统的固相连接方法存在上述缺陷,但是因为其技术简单、成本低廉,目前仍在大规模应用。
为了优化连接质量,国内外学者一方面继续深入研究胶接、机械紧固等方法,出现了电磁铆接、冷碾铆钉连接、自冲铆接等前沿工艺技术,另一方面致力于开发具有巨大应用潜力的焊接技术,焊接技术能有效避免胶接及机械紧固等方法的缺点。本文简单介绍了激光焊接、回填式搅拌摩擦点焊、感应焊接、振动焊接这四种焊接方法在热塑性树脂基复合材料连接上的应用,然后着重介绍了电阻焊与超声波焊接,这两种焊接方法在保证焊接强度的同时,兼具效率高、成本低、可靠性好等优势,在某些领域已经取代了胶接、机械紧固等技术。电阻焊是传统的压焊技术,其发展较早,技术比较成熟,但在焊接热塑性树脂基复合材料时需要添加金属网等材料作为加热元件,且添加物最终会残留在焊接接头当中,降低了结构的疲劳性能,易产生气孔等缺陷。超声波焊接技术近年来发展迅速,将其应用于热塑性树脂基复合材料的焊接时,该技术的优势更加明显,相对于胶接、电阻焊,其不需添加任何辅助材料即可连接材料,实现了结构的一致性;相对于机械紧固,超声波焊接不需开孔、紧固,实现了结构的整体性。此外,该技术可以降低应力集中,减轻结构质量,在连接热塑性树脂基复合材料领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周利
秦志伟
刘杉
陈伟光
李高辉
宋晓国
冯吉才
关键词:  热塑性树脂基复合材料  胶接  机械紧固  焊接    
Abstract: Thermoplastic resin matrix composites possess high strength, high stiffness, good heat resistance and corrosion resistance, which are widely used in aerospace and other fields. In this paper, adhesive bonding, mechanical fastening and welding technology of thermoplastic resin matrix composites are comprehensively introduced, and the process characteristics, connection mechanism, failure mode of these techniques are analyzed and compared.
At present, the most widely used methods for connecting composite materials are adhesive bonding and mechanical fastening. However, both have obvious shortcomings. For adhesive bonding, the adhesive needs long curing time and the quality of adhesive joints is easily affected by the environment, these technical and environmental restrictions limit the application scope of the adhesive technology. Mechanical fastening, including bolt connection, rivet connection and other methods, increases the weight of the structure because of the introduce of bolts and rivets, which does not meet the lightweight purpose. Furthermore, a hole also needs to be drilled in the process of mechanical fastening, leading to stress concentration and losing of the strength of the material. Although the traditional solid-phase bonding method has the above defects, it is still widely used because of its simple technology and low cost.
In order to optimize the connection quality, scholars continue to study adhesive bonding and mechanical fastening, and new methods such as electromagnetic riveting technology, cold rolling rivet connection technology and self-piercing riveting technology have proposed. On the other hand, researchers are also devoted to the development of welding technology with great potential application. This paper briefly introduces the application of laser welding, friction stir spot welding, induction welding and vibration welding in the connection of resin matrix composites, with emphasis focused on resistance welding and ultrasonic welding. In fact, welding technology, especially the resistance welding and ultrasonic wel-ding, can effectively avoid the shortcomings of adhesive bonding and mechanical fastening, which has advantages such as high efficiency, low cost and high reliability. Therefore, welding has replaced gluing and mechanical fastening in some areas. Resistance welding is a traditional technique of pressing welding, which has been widely used in assembling for a long time, thus, the technology is mature and the welded joints tend to have high connection strength. However, metal mesh or other materials need to be added as heating element, which has a negative effect on the fatigue property of the structure. Ultrasonic welding technology has developed rapidly in the past ten years. When it is applied to the welding of resin composites, the advantage of this technology is obvious. Compared with adhesive bonding and resistance welding, it can connect materials without adding any auxiliary materials, realizing the consistency of the structure. Compared with mechanical fastening, ultrasonic welding does not require hole opening or fastening, realizes the integrity of the structure, reduces stress concentration and decreases the weight of the structure. Therefore, ultrasonic welding technology has a very broad application prospect in joining thermoplastic resin matrix composites.
Key words:  thermoplastic resin matrix composites    adhesive bonding    mechanical fastening    welding
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TB33  
基金资助: 山东省自然科学基金(ZR2016EEQ03);山东省重大科技创新工程项目(2017CXGC0811)
作者简介:  周利,现为哈尔滨工业大学(威海)材料学院副教授,博士生导师,中国焊接学会青年工作委员会委员,中国焊接学会第九届压力焊专业委员会委员。本硕博均毕业于哈尔滨工业大学焊接专业,2010年获博士学位。主要从事先进固相连接技术研究,研究领域包括搅拌摩擦焊接与加工技术、超声波焊接技术、新型电阻焊技术等,近年来发表相关SCI/EI检索论文50余篇。目前为哈尔滨工业大学(威海)山东省特种焊接技术重点实验室先进固相连接研究方向负责人,主持/参与多项国家级、省部级纵向课题及军民品横向课题研究,和领域内国内外知名高校、科研院所及产业界建立了合作关系。zhouli@hitwh.edu.cn
引用本文:    
周利, 秦志伟, 刘杉, 陈伟光, 李高辉, 宋晓国, 冯吉才. 热塑性树脂基复合材料连接技术的研究进展[J]. 材料导报, 2019, 33(19): 3177-3183.
ZHOU Li, QIN Zhiwei, LIU Shan, CHEN Weiguang, LI Gaohui, SONG Xiaoguo, FENG Jicai. Progress on Joining Technology of Thermoplastic Resin Matrix Composites. Materials Reports, 2019, 33(19): 3177-3183.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090151  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3177
1 Messler R W. Journal of Thermoplastic Composite Materials,2004,17(1),51.2 Zhang Z, Wen Y H, Xu Z Y, et al. Journal of Nanjing University of Aeronautics & Astronautics,2015(2),314(in Chinese).张震,温永海,徐忠岩,等.南京航空航天大学学报,2015(2),314.3 Li Xin, Zhang X N, Xu X M. Chemistry and Adhesion,2006(3),172(in Chinese).李欣,张晓妮,徐晓沐.化学与黏合,2006(3),172.4 Wei S W. Chemistry and Adhesion,2005(6),60(in Chinese).韦生文.化学与黏合,2005(6),60.5 Huang Z C, Chen W D, Cheng Y W, et al. Journal of East China Jiaotong University,2013(4),1(in Chinese).黄志超,陈伟达,程雯玉,等.华东交通大学学报,2013(4),1.6 Gao J J, Chu L S. Fiber Reinforced Plastics/Composites,2018(2),101(in Chinese).高佳佳,楚珑晟.玻璃钢/复合材料,2018(2),101.7 Ochôa P, Fernandez Villegas I, Groves R M, et al. Mechanical Systems & Signal Processing,2018,99,197.8 Jaeschke P, Wippo V, Suttmann O, et al. Journal of Laser Applications,2015,27(S2),S29004.9 Matsumoto R, Ishikawa T, Takemura M, et al. International Journal of Steel Structures,2016,16(4),1319.10 Pagano N, Ascari A, Liverani E, et al. In:9th CIRP International Conference on Intelligent Computation in Manufacturing Engineering, ICME 2014. Capri,Italy,2014,pp.423.11 Shi H, Villegas I F, Octeau M A, et al. Composites Part A,2015,70(70),16.12 Jiang Q B, Wang X L,Yan Y C. Materials Science and Techonology,2005,13(3),247(in Chinese).姜庆滨,王晓林,闫久春.材料科学与工艺,2005,13(3),247.13 Yang G. Scientific and Technological Innovation Information,2018(2),61(in Chinese).杨刚.科学技术创新,2018(2),61.14 Wo X Y, Tu B, Xia Y W. Spacecraft Recovery & Remote Sensing,2008,29(4),62(in Chinese).沃西源,涂彬,夏英伟.航天返回与遥感,2008,29(4),62.15 Liang Z D, Yan Y, Zhang T T, et al. Journal of Beijing University of Aeronautics and Astronautics,2014, 40(12),1786(in Chinese).梁祖典,燕瑛,张涛涛,等.北京航空航天大学学报,2014,40(12),1786.16 Scarselli G, Corcione C, Nicassio F, et al. International Journal of Adhesion & Adhesives,2017,75,174.17 Knight G A, Hou T H, Belcher M A. International Journal of Adhesion & Adhesives,2012,39(6),1.18 Li J T, Ma B L. Helicopter Technique,2016(4),64(in Chinese).李俊婷,马宝亮.直升机技术,2016(4),64.19 Oudad W, Madani K, Bouiadjra B B, et al. Composites Part B Enginee-ring,2012,43(8),3419.20 Zhan X, Li Y, Gao C, et al. Optics & Laser Technology,2018,106,398.21 Tao R, Alfano M, Lubineau G. Composites Part A: Applied Science & Manufacturing,2018,109,84.22 Sun C, Min J, Lin J, et al. International Journal of Adhesion & Adhesives,2018,84,325.23 Ma Y, Zhao Q L, Jiang K B. Fiber Reinforced Plastics/Composites,2010(2),78(in Chinese).马毓,赵启林,江克斌.玻璃钢/复合材料,2010(2),78.24 Zhao T, Palardy G, Villegas I F, et al. Composites Part B Engineering,2017,112,224.25 Zhang Z, Xiao Y, Liu Y Q, et al. Acta Materiae Compositae Sinica,2016,33(1),163(in Chinese).张振,肖毅,刘彦清,等.复合材料学报,2016,33(1),163.26 Cao Z Q, Liu H. Journal of Plasticity Engineering,2007,14(1),120(in Chinese).曹增强,刘洪.塑性工程学报,2007,14(1),120.27 Wu X D, Wang M, Kong L, et al. Electric Welding Machine,2016,46(4),31(in Chinese).吴小丹,王敏,孔谅,等.电焊机,2016,46(4),31.28 Goushegir S M, Santos J F D, Amancio-Filho S T. Materials & Design,2015,83,431.29 Kinloch A J, Kodokian G K A. The adhesive bonding of thermoplastic composites, Imperial College of Science, Technology and Medicine, London, England,1989.30 Jung K W, Kawahito Y, Katayama S. International Journal of Precision Engineering and Manufacturing-Green Technology,2014,1(1),43.31 Jaeschke P, Wippo V, Suttmann O, et al. Journal of Laser Applications,2015,27(S2),S29004.32 Gonçalves J, Santos J F D, Canto L B, et al. Materials Letters,2015,159(3-4),506.33 Huang Y, Meng X, Xie Y, et al. Composite Structures,2018,189,627.34 Zhang S Y. Modern Plastics Processing and Applications,2015,27(2),34(in Chinese).张胜玉.现代塑料加工应用,2015,27(2),34.35 Zhang S Y. Aeronautical Manufacturing Gechnology,2014(16),65(in Chinese).张胜玉.航空制造技术,2014(16),65.36 Bates P, Couzens D, Kendall J. Journal of Thermoplastic Composite Materials,2001,14(4),344.37 Dubé M, Hubert P, Yousefpour A, et al. Composites Part A Applied Science & Manufacturing,2007,38(12),2541.38 Shi H, Villegas I F, Bersee H E. Journal of Thermoplastic Composite Materials,2017,30(12),1654.39 Guo Q, Li R Q, Chen Z, et al. Transactions of the China Welding Institution,2013,34(5),79(in Chinese).郭青,李瑞琦,陈征,等.焊接学报,2013,34(5),79.40 Villegas I F, Bersee H E N. Journal of Thermoplastic Composite Mate-rials,2013,28(1),46.41 Li D, Zhao Y Y, Zhang Y S. Transactions of the China Welding Institution,2014,35(2),47(in Chinese).李东,赵杨洋,张延松.焊接学报,2014,35(2),47.42 Villegas I F, Bersee H E N. Advances in Polymer Technology,2010,29(2),112.43 Benatar A, Gutowski T G. Polymer Engineering & Science,1989,29(23),1705.44 Zhao T, Broek C, Palardy G, et al. Composites Part A Applied Science & Manufacturing,2018,109,355.45 Potente H. Materials & Design,1984,5(5),228.46 Huang Y J. Applied Mechanics & Materials,2012,101-102,871.47 Liu S J, Chang I T, Hung S W. Polymer Composites,2010,22(1),132.48 Chuah Y K, Chien L H, Chang B C, et al. Polymer Engineering & Science,2010,40(1),157.49 Villegas I F, Bersee H E N. Advances in Polymer Technology,2010,29(2),112.50 Levy A, Corre S L, Poitou A. International Journal of Material Forming,2014,7(1),39.51 Gao Y, Chen F B, Zhao Y F. Aerospace Materials & Technology,2006(6),9(in Chinese).高阳,陈风波,赵云峰.宇航材料工艺,2006(6),9.52 Villegas I F, Palardy G. Composite Interfaces,2017,24(5),515.53 Palardy G, Villegas I F. Composite Interfaces,2016,24(2),203.54 Villegas I F. Composites Part A,2014,65(10),27.55 Wang K, Shriver D, Li Y, et al. Journal of Manufacturing Processes,2017,29,124.
[1] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[2] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[3] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[4] 翟培卓, 薛松柏, 陈涛, 孙子建, 陈卫中, 郭佩佩. 焊缝跟踪过程传感与信号处理技术的研究进展[J]. 材料导报, 2019, 33(7): 1079-1088.
[5] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[6] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[7] 薛松柏, 王博, 张亮, 龙伟民. 中国近十年绿色焊接技术研究进展[J]. 材料导报, 2019, 33(17): 2813-2830.
[8] 樊丁, 杨文艳, 肖磊. 大电流GMAW焊接飞溅和烟尘的形态及相结构分析[J]. 材料导报, 2019, 33(16): 2729-2733.
[9] 申琦, 余森, 牛金龙, 汶斌斌, 刘少辉, 于振涛. 植介入用精细金属丝材及其异质材料焊接技术研究进展[J]. 材料导报, 2019, 33(13): 2127-2132.
[10] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[11] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[12] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[13] 张聪惠,王 婧,宋 薇,王 洋,赵 旭,王耀勉. 高能喷丸处理工业纯钛焊接接头在10%HCl溶液中的腐蚀行为[J]. 《材料导报》期刊社, 2018, 32(9): 1564-1570.
[14] 樊江磊, 刘占云, 李育文, 吴深, 王霄, 刘建秀. Sn-Cu系无铅钎料微合金化研究进展[J]. 材料导报, 2018, 32(21): 3774-3779.
[15] 肖龙仁, 雷玉成, 朱强, 李天庆, 陈钢, 罗梦, 赵军, 陈文彬. 焊丝成分对T91/316L异种钢焊接接头微观组织和力学性能的影响[J]. 材料导报, 2018, 32(20): 3601-3605.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed