Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21040293-9    https://doi.org/10.11896/cldb.21040293
  金属与金属基复合材料 |
微流控系统制备金属纳米催化剂研究进展
孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭*
东北电力大学化学工程学院,吉林 吉林 132012
Progress of Metal Nano-catalysts in Microfluidic Systems
SUN Mojie, WANG Yang, LIU Jianjun, ZHANG Shiyuan, ZHOU Jing, ZHANG Ting*
School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
下载:  全 文 ( PDF ) ( 23043KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属催化剂按活性组分的数量一般分为单金属催化剂与多金属催化剂,当金属材料缩小至纳米级别时,具有的比表面积大、稳定性高等优势使其表现出优异的催化活性与稳定性,因此金属纳米材料成为催化领域的研究热点。微流控反应器的小尺寸、大比表面积特性使其具有高传质传热效率与高混合速率等特点,可以大幅提高反应速率,在纳米材料的制备中展现出突出优势。同时,利用传统方法合成金属纳米材料时,反应进程难以做到精准可控;而利用微流控方法对微小体积流体的精确可操控性,可以达到对反应进程的精准控制,得到结构功能可控、尺寸分布均匀的材料。
本文将微流控体系的优势与金属纳米材料的高催化性能相结合,归纳了近年来利用微流控系统制备单金属及多金属纳米材料的研究进展,并探讨了金属纳米催化剂在燃料电池与有机合成领域的应用。结合金属纳米材料在微反应器中的形成机理,讨论了微反应器通道结构及反应条件对材料微观结构的影响,并对微流控技术制备金属纳米催化剂的集成化与工业化进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙墨杰
王洋
刘建军
张士元
周静
张庭
关键词:  微反应器  微流体学  纳米材料  催化剂  燃料电池    
Abstract: Metal catalysts are generally categorized as mono- and multimetallic catalysts, depending on the number of active components.Metal materials exhibit superior catalytic activity and stability owing to their large specific surface area and high stability when reduced to the nanometer level.Therefore, metal nanomaterials have attracted significant research attention in the field of catalysis.They possess high mass and heat transfer efficiency and high mixing rate, which can significantly improve the reaction rate, owing to their large surface area to volume ratio and size effect of the microfluidic reactor.However, controlling the reaction process during the synthesis of metal nanomaterials by conventional methods is difficult.The precise manipulability characteristics of microfluidic methods for tiny volumes of fluids can be used to obtain materials with controllable structure function and uniform size distribution.
Combined with the characteristics of microfluidic systems and the high catalytic performance of metal nanomaterials, this review summarizes the research progress in the preparation of mono- and multimetallic nanomaterials through microfluidic systems, as well as explores their applications as catalysts in the fields of fuel cells and organic synthesis.By modulating the microstructure of metal nanomaterials with microfluidic systems, the effects of microreactor channel structure and reaction conditions on the microstructure of the materials are discussed.This review provides an outlook on the integration and industrialization of metal nanocatalysts prepared through microfluidic technology.
Key words:  microreactor    microfluidics    nanomaterials    catalyst    fuel cell
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TQ031  
基金资助: 国家自然科学基金(51772049)
通讯作者:  * 张庭,博士研究生。2004年7月和2009年3月于东北电力大学获得本科和硕士学位,现为华北电力大学博士研究生和东北电力大学实验师,研究方向为电厂化学仪器仪表,水质在线分析仪,现发表论文2篇。574359020@qq.com   
作者简介:  孙墨杰,博士,教授,硕士研究生导师。在东北电力大学获得应用化学学士和硕士学位,并于2001年获得天津大学精密仪器与机械专业的博士学位。研究方向为化学分析测试技术与仪器、水处理技术等。发表论文50余篇,包括Journal of Materials Science、Ionics、New Journal of Chemistry等。
引用本文:    
孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
SUN Mojie, WANG Yang, LIU Jianjun, ZHANG Shiyuan, ZHOU Jing, ZHANG Ting. Progress of Metal Nano-catalysts in Microfluidic Systems. Materials Reports, 2023, 37(7): 21040293-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040293  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21040293
1 Samanta A, Das S, Jana S. Nanoscale Advances, 2020, 2, 417.
2 Guo K, Ding Y, Luo J, et al. ACS Applied Energy Materials, 2019, 2(8), 5851.
3 Dong N, Chen Z, Wang C. Nonferrous Metals (Extractive Metallurgy), 2020(5), 71 (in Chinese).
董娜, 陈哲, 王辰. 有色金属(冶炼部分), 2020(5), 71.
4 Gao R. Guangzhou Chemical Industry, 2020, 48(17), 24 (in Chinese).
高瑞. 广州化工, 2020, 48(17), 24.
5 Zhao X, Wei C, Gai Z, et al. Chemical Papers, 2020, 74(3), 767.
6 Seki Y, Sawada Y, Funakubo H, et al. MRS Advances, 2020, 5(31-32), 1.
7 Musza K, Szabados M, Dám A A, et al. Journal of Solid State Chemi-stry, 2021, 293, 121756.
8 Guo M Y, Li F H, Bao Y, et al. Chinese Journal of Applied Chemisity, 2016, 33(10), 1115 (in Chinese).
郭梦园, 李风华, 包宇, 等. 应用化学, 2016, 33(10), 1115.
9 Kung C T, Gao H, Lee C Y, et al. Chemical Engineering Journal, 2020, 399(1), 125748.
10 Solsona M, Vollenbroek J, Tregout C, et al. Lab on a Chip, 2019, 19(21), 3601.
11 Lu J M, Wang H F, Pan J Z, et al. Acta Chimica Sinica, 2021, 79(7), 809 (in Chinese).
卢佳敏, 王慧峰, 潘建章, 等. 化学学报, 2021, 79(7), 809.
12 Fang Z, Ding Y, Zhang Z, et al. Lab on a Chip, 2020, 20, 722.
13 Min Q, Li Z, Yang S, et al. Reaction Chemistry & Engineering, 2019, 4(2), 351.
14 Zhou Y, Wang D, Kang X, et al. Nanoscale, 2020, 12(23), 12647.
15 Lohse S, Eller J, Sivapalan S, et al. ACS Nano, 2013, 7, 4135.
16 SebastiánV, Jensen K F. Nanoscale, 2016, 8(33), 15288.
17 Xin S, Zhu C, Fu T, et al. Chemical Engineering Science, 2018, 188(12), 158.
18 Liu X Y, Fu T T, Zhu C Y, et al. Journal of Chemical Industry and Engineering(China), 2021, 72(2), 772 (in Chinese).
刘西洋, 付涛涛, 朱春英, 等. 化工学报, 2021, 72 (2), 772.
19 Kim Y H, Zhang L, Yu T, el al. Small, 2013, 9(20), 3462.
20 Zhang L, Niu G, Lu N, el al. Nano Letters, 2014, 14(11), 6626.
21 Lamer V, Dinegar R. Journal of the American Chemical Society, 1950, 72(11), 4847.
22 Wang J, Song Y. Small, 2017, 13(18), 1604084.
23 Shen X, Song Y, Li S, et al. RSC Advances, 2014, 4, 34179.
24 Yaqoob L, Noor T, Iqbal N. International Journal of Energy Research, 2020, 45(5), 6550.
25 Suryawanshi P L, Gumfekar S P, Kumar P R, et al. Colloid and Interface Science Communications, 2016, 13, 6.
26 Luty-Błocho M, Wojnicki M, Pacławski K, et al. Chemical Engineering Journal, 2013, 226, 46.
27 Ran G, Fu Q, Xu W. RSC Advances, 2015, 5(19), 14740.
28 Huang L. Atomic-scale regulation of nanomaterials for enhanced catalytic performance. Ph. D. Thesis, University of Science and Technology of China, China, 2019 (in Chinese).
黄亮. 纳米材料原子调控增强催化性能. 博士学位论文, 中国科学技术大学, 2019.
29 Huang L, Zhang X, Han Y, et al. Chemistry of Materials, 2017, 29(10), 4557.
30 Xiao C, Tian N, Zhou Z Y, et al. Journal of Electrochemistry, 2020, 26(1), 64 (in Chinese).
肖翅, 田娜, 周志有, 等. 电化学, 2020, 26(1), 64.
31 Huang R, Chen S P, Zhou Z Y, et al. In:China Symposium on Nanomaterials and Structures, Testing and Characterization, Fujian, China, 2010, pp, 28 (in Chinese).
黄蕊, 陈声培, 周志有, 等. 全国纳米材料与结构, 检测与表征研讨会, 福建, 2010, pp, 28.
32 Zhao X, Xi C, Zhang R, et al. ACS Catalysis, 2020, 10(18), 10637.
33 Sun M, Liu T, Xu W L. Chinese Journal of Applied Chemistry, 2018, 35(5), 564.
34 Wang Z, Fan H, Liang H, et al. Electrochimica Acta, 2017, 230, 245.
35 Alruqi S, Al-Thabaiti S, Malik M, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 540(5), 36.
36 Tang Y, Gao F, Yu S, et al. Journal of Power Sources Power Sources, 2013, 239(1), 374.
37 Wu F X, Zhang D T, Peng M H, et al. Angewandte Chemie International Edition, 2016, 55(16), 4952.
38 Cho S, Sa Y J, Hwang S, et al. Small, 2016, 12(38), 5347.
39 Hu Y, Lu Y, Zhao X, et al. Nano Research, 2020, 13, 2365.
40 Zhang D, Wu F, Peng M, et al. Journal of the American Chemical Society, 2015, 137(19), 6263.
41 Feng Y, Li Z, Huang C, et al. Ionics, 2011, 17(7), 617.
42 Sebastian V, Zaborenko N, Gu L, et al. Crystal Growth & Design, 2017, 17(5), 2700.
43 Knauer A, Thete A, Li S, et al. Chemical Engineering Journal, 2011, 166(3), 1164.
44 Laura U, Arruebo M, Sebastian V, et al. Dalton Transactions, 2018, 47(5), 1693.
45 Silva M, Ângelo A C. Electrocatalysis, 2010, 1(2-3), 95.
46 Zhang D, Wang Y, Deng J, et al. Nano Energy, 2020, 70, 104565.
47 Hyun M S, Kim S K, Lee B, et al. Catalysis Today, 2008, 132(1-4), 138.
48 Lee Y W, Kim M, Kim Y, et al. The Journal of Physical Chemistry C, 2010, 114(17), 7689.
49 Tofighi G, Lichtenberg H, Pesek J, et al. Reaction Chemistry & Engineering, 2017, 2, 876.
50 Bandulasena M V, Vladisavljevic G T, Odunmbaku O G, et al. Chemical Engineering Science, 2017, 171(2), 243.
51 Jamal F, Jean-Sébastien G, Penhoat M, et al. Microsystem Technologies, 2012, 18(2), 151.
52 Fu Q, Ran G, Xu W. RSC Advances, 2015, 5(47), 37512.
53 Patil G A, Bari M, Bhanvase B, et al. Chemical Engineering and Processing, 2012, 62, 69.
54 Zhang L, Wang Y, Tong L, et al. Langmuir, 2013, 29(50), 15719.
55 Li X, Visaveliya N, Hafermann L, et al. The Chemical Engineering Journal, 2017, 326(15), 1058.
56 Xu L, Peng J, Srinivasakannan C, et al. RSC Advances, 2014, 4(48), 25155.
57 Song Y, Modrow H, Henry L, et al. Chemistry of Materials, 2006, 18(12), 2817.
58 Eluri R, Paul B. Journal of Nanoparticle Research, 2012, 14(4), 800.
59 Pekkari A, Say Z, Susarrey-Arce A, et al. ACS Applied Materials & Interfaces, 2019, 11(39), 36196.
60 Zeng C, Wang C, Wang F, et al. Chemical Engineering Journal, 2012, 204-206(15), 48.
61 Yang M, Luo L, Chen G. AIChE Journal, 2020, 66(6), e16950.
62 Zhao S, Li Y Y, Stavitski E, et al. ChemCatChem, 2015, 7(22), 3683.
63 Iles A, Habgood M, Mello A, et al. Catalysis Letters, 2007, 114(1-2), 71.
64 Xu B B, Zhang R, Liu X Q, et al. Chemical communications, 2012, 48(11), 1680.
65 Liang Y, Pan Y, Wang C, et al. Chemical Engineering Journal, 2013, 219(1), 78.
66 Hoang P H, Yoon K B, Kim D, et al. RSC Advances, 2012, 2(12), 5323.
67 Jia Y, Wang J, Zhang K, et al. Microporous and Mesoporous Materials, 2017, 247, 103.
68 Debecker, D P, Solène L B, Boissière C, et al. Chemical Society Reviews, 2018, 47, 4112.
69 Wang X F, Niu X L, Qin M, et al. Journal of Functional Materials, 2022, 51(3), 03039(in Chinese).
王雪峰, 牛小连, 秦苗, 等. 功能材料, 2022, 51(3), 03039.
70 Shang C, Wu Z, Wu W, et al. ACS Applied Materials & Interfaces, 2019, 11(18), 16693.
71 Gangu K K, Maddila S, Mukkamala S, et al. Inorganica Chimica Acta, 2016, 446, 61.
72 Zhao Y, Xiang Z H. Journal of Chemical Industry and Engineering(China), 2020, 71(6), 99 (in Chinese).
赵云, 向中华. 化工学报, 2020, 71(6), 99.
73 Sheng B C, Li C, Liu Y Y, et al. Chemical Research in Chinese Universities, 2019, 40(7), 35 (in Chinese).
盛炳琛, 李从, 刘颖雅, 等. 高等学校化学学报, 2019, 40(7), 35.
74 Faustini M, Kim J, Jeong G Y, et al. Journal of the American Chemical Society, 2013, 135(39), 14619.
75 Zhu L Y, Wang W, Ju X J, et al. Chemical Industry and Engineering Progress, 2014, 33(9), 2229 (in Chinese).
褚良银, 汪伟, 巨晓洁, 等. 化工进展, 2014, 33(9), 2229.
76 Ke T, Zeng X F, Wang J X, et al. Journal of Nanoscience and Nanotechnology, 2011, 11(6), 5154.
77 Zhang T, Zhang X, Yan X, et al. Chemical Engineering Journal, 2013, 228(15), 398.
78 Tai S J, Sheng D H, Yang J, et al. Contemporary Chemical Industry, 2015, 237(10), 2300 (in Chinese).
邰石君, 盛东海, 杨君, 等. 当代化工, 2015, 237(10), 2300.
[1] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[2] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[3] 李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
[4] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[5] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[6] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[7] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[8] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[9] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[10] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[11] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[12] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[13] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[14] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[15] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed