Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22080087-8    https://doi.org/10.11896/cldb.22080087
  高分子与聚合物基复合材料 |
塑晶材料及其压卡效应研究发展与展望
范晓燕1, 赵雪婷2, 欧志强1,3,*
1 内蒙古师范大学物理与电子信息学院,呼和浩特 010022
2 中国科学院金属研究所,沈阳 110016
3 内蒙古自治区功能材料物理与化学重点实验室,呼和浩特 010022
Development and Prospect of Research on Plastic Crystals and Its Barocaloric Effects
FAN Xiaoyan1, ZHAO Xueting2, OU Zhiqiang1,3,*
1 School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot 010022, China
下载:  全 文 ( PDF ) ( 24104KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着世界经济的快速发展,以及全球变暖导致的气候问题日益加重,制冷技术对现代社会的影响越来越深入。全氯氟烃(CFCs)和含氢氯氟烃(HCFCs)类氟利昂制冷剂在常规的气体压缩制冷技术中一直占据主要地位,但这一类制冷剂的使用会加剧全球的温室效应。为了实现全球碳中和,寻求高效环保的制冷方案成为科学家们的重点研究方向,而基于外场诱导的固态相变技术就提供了一种很有前景的方案,其中压卡效应备受关注。近年来,科学家们相继在一系列被称为塑晶的材料中发现了庞压卡效应,其熵变比传统的固态相变制冷材料高一个数量级。在此之后,科研界对塑晶材料压卡效应的研究逐渐增多,并不断探寻出新的具有优异性能的塑晶材料作为压卡制冷技术的工质。这极大地促进了压卡制冷技术的发展,为未来实现绿色环保的高效制冷技术提供了更多可能性。本文将简单解释塑晶压卡效应的物理机制,对C5H12O2(NPG)、(NH2)C(CH2OH)3(TRIS)以及碳硼烷等几种典型的塑晶材料在压卡效应上的综合表现进行陈述和对比,并对塑晶压卡效应在新型固态制冷技术中的应用进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范晓燕
赵雪婷
欧志强
关键词:  固态相变  庞压卡效应  压卡效应制冷技术  塑晶材料    
Abstract: With the rapid development of economy and the increasing warming of global climate, the impact of refrigeration technology on modern society is more and more in-depth. The use of perfluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) freon refrigerants is at primary position in traditional gas compression refrigeration, however, will aggravate the greenhouse effect. To achieve global carbon neutralization, seeking high efficiency and environmentally friendly refrigeration schemes has become the key research direction for scientists, while the solid-state phase change technology based on field induction provides a promising scheme. Among them, the barocaloric eects have attracted much attention. In recent years, scientists have found the colossal barocaloric effects in a series of materials named plastic crystal, in which the entropy change is one order of magnitude higher than that of the traditional solid-state phase change refrigeration materials. Since then, the research on the barocaloric effects of plastic crystal materials has gradually increased in the scientific research community, and new plastic crystal materials with excellent performance have been continuously explored as the working medium of barocaloric effects refrigeration technology. This has greatly promoted the development of barocaloric effects refrigeration technology and provided more possibilities for realizing green and environmentally friendly high-efficiency refrigeration technology in the future. This paper will briefly explain the physical mechanism of the barocaloric effects in the plastic crystal, compare the comprehensive performance of several typical plastic crystal materials such as C5H12O2 (NPG), (NH2)C(CH2OH)3 (TRIS) and carborane, etc. and furthermore, and prospect the application of plastic crystal barocaloric effects in new solid-state refrigeration technology.
Key words:  solid-state phase transition    colossal barocaloric effects    barocaloric refrigeration technology    plastic crystals
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TB64  
  O59  
基金资助: 国家自然科学基金(11864031);内蒙古自治区高等学校青年科技英才支持计划(NJYT-18-B15)
通讯作者:  *欧志强,内蒙古师范大学物理与电子信息学院副教授、硕士研究生导师。2013年于荷兰代尔夫特理工大学材料物理专业博士毕业。目前主要从事固体卡效应材料、磁功能材料等方面的研究工作。发表论文40余篇,研究成果发表在Advance Energy Materials、Journal of Alloys and Compounds等期刊杂志,出版《Magnetic Structure and Phase Formation of Magnetocaloric Mn-Fe-P-X compounds》专著1部。 zq.ou@imnu.edu.cn   
作者简介:  范晓燕,2022年7月毕业于内蒙古师范大学,获得工学学位,在欧志强教授的指导下进行研究。现为中国科学技术大学材料科学与工程学院硕士研究生,在李昺研究员的指导下进行研究,目前主要研究领域为氢原子动力学的中子散射。
引用本文:    
范晓燕, 赵雪婷, 欧志强. 塑晶材料及其压卡效应研究发展与展望[J]. 材料导报, 2024, 38(5): 22080087-8.
FAN Xiaoyan, ZHAO Xueting, OU Zhiqiang. Development and Prospect of Research on Plastic Crystals and Its Barocaloric Effects. Materials Reports, 2024, 38(5): 22080087-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080087  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22080087
1 United Nations Environment Programme. The Importance of Energy Efficiency in the Refrigeration, Air-Conditioning and Heat Pump Sectors, Vienna, 2018.
2 Li D M, Zuo D R, Yu P. Materials Reports, 2021, 35(11), 11120 (in Chinese).
李冬梅, 左定荣, 余鹏. 材料导报 , 2021, 35(11), 11120.
3 Liu J, Gottschall T, Skokov K P, et al. Nature Materials, 2012, 11(7), 620.
4 Cong D, Xiong W, Planes A, et al. Physical Review Letters, 2019, 122(25), 255703.
5 Moya X, Kar-Narayan S, Mathur N D. Nature Materials, 2014, 13(5), 439.
6 Crossley S, Mathur N D, Moya X. Aip Advances, 2015, 5(6), 067153.
7 Müller K A, Fauth F, Fischer S, et al. Applied Physics Letters, 1998, 73(8), 1056.
8 Li B, Kawakita Y, Ohira-Kawamura S, et al. Nature, 2019, 567(7749), 506.
9 Hou H, Qian S, Takeuchi I. Nature Reviews Materials, 2022, 7(8), 633.
10 Tong X, Shen L M, Li L, et al. Vacuum & Cryogenics, 2021, 27(4), 316 (in Chinese).
童潇, 申利梅, 李亮, 等. 真空与低温, 2021, 27(4), 316.
11 Gottschall T, Skokov K P, Fries M, et al. Advanced Energy Materials, 2019, 9(34), 1901322.
12 Hou H, Finkel P, Staruch M, et al. Nature Communications, 2018, 9(1), 4075.
13 Shi J, Han D, Li Z, et al. Joule, 2019, 3(5), 1200.
14 Nair B, Usui T, Crossley S, et al. Nature, 2019, 575(7783), 468.
15 Li Z C, Shi J Y, Chen J P, et al. Journal of Refrigeration, 2021, 42(1), 1 (in Chinese).
李子超, 施骏业, 陈江平, 等. 制冷学报, 2021, 42(1), 1.
16 Mañosa L, Planes A. Applied Physics Letters, 2020, 116(5), 050501.
17 Hou H, Simsek E, Stasak D, et al. Journal of Physics D: Applied Phy-sics, 2017, 50, 404001.
18 Mañosa L, Planes A. Advanced Materials, 2017, 29(11), 1603607.
19 De Oliveira N A. Acta Materialia, 2023, 246, 118657.
20 Cazorla C. Applied Physics Reviews, 2019, 6(4), 041316.
21 Zhang J, Xu Y, An S, et al. Chinese Physics B, 2020, 29(7), 076202.
22 Lloveras P, Aznar A, Barrio M, et al. Nature Communications, 2019, 10(1), 1.
23 Song R Q, Zhang Z D, Li B, et al. Journal of Refrigeration, 2022, 43(4), 35 (in Chinese).
宋睿琪, 张志东, 李昺, 等. 制冷学报, 2022, 43(4), 35.
24 Brand R, Lunkenheimer P, Loidl A. The Journal of Chemical Physics, 2002, 116(23), 10386.
25 Staveley L A K. Annual Review of Physical Chemistry, 1962, 13(1), 351.
26 Zhang Z, Li K, Lin S, et al. arXiv preprint, 2021, 2103, 04348.
27 Boldrin D. Applied Physics Letters, 2021, 118(17), 170502.
28 Greco A, Aprea C, Maiorino A, et al. International Journal of Refrigeration, 2019, 106, 66.
29 Lloveras P, Tamarit J L. MRS Energy & Sustainability, 2021, 8(1), 3.
30 Chandra D, Ding W, Lynch R A, et al. Journal of the Less Common Metals, 1991, 168(1), 159.
31 Tamarit J L, Perez-Jubindo M A, De La Fuente M R. Journal of Physics, Condensed Matter, 1997, 9(25), 5469.
32 Li F B, Li M, Xu X, et al. Nature Communications, 2020, 11(1), 1.
33 Dannenberg J J. An introduction to hydrogen bonding by george A, Oxford University Press, New York and Oxford, 1997, pp. 303.
34 Zhang Z, Chen Y N, Qi J, et al. Chinese Physics B, 2022, 31(3), 036802.
35 Khot S S, Anbhule P V, Desai U V, et al. Comptes Rendus Chimie, 2018, 21(9), 814.
36 Aznar A, Lloveras P, Barrio M, et al. Journal of Materials Chemistry A, 2020, 8(2), 639.
37 Potenza J A, Lipscomb W N. Inorganic Chemistry, 1966, 5(9), 1471.
38 Beall H A, Lipscomb W N. Inorganic Chemistry, 1967, 6(5), 874.
39 Leites L A, Bukalov S S. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 1989, 38(10), 2079.
40 Momma K, Izumi F. Journal of Applied Crystallography, 2011, 44(6), 1272.
41 Yamamuro O, Hayashi M, Matsuo T, et al. The Journal of Chemical Physics, 2003, 119(9), 4775.
42 Zhang K, Song R Q, Qi J, et al. Advanced Functional Materials, 2022, 32(20), 2112622.
43 Leites L A. Chemical Reviews, 1992, 92(2), 279.
44 Andrade V, Paixão L S, Carvalho A M G, et al. arXiv preprint, 2022, 2208, 08474.
45 Carey D M. The Journal of Chemical Physics, 1998, 108(7), 2669.
46 Wang X, Guo Q, Zhong Y, et al. Renewable Energy, 2013, 51, 241.
47 Solangi K H, Kazi S N, Luhur M R, et al. Energy, 2015, 89, 1065.
48 Mañosa L, González-Alonso D, Planes A, et al. Nature Materials, 2010, 9(6), 478.
49 Mañosa L, Gonzalez-Alonso D, Planes A, et al. Nature Communications, 2011, 2(1), 1.
50 Li B, Zhang Z D. Science China Physics, Mechanics & Astronomy, 2021, 51(6), 44 (in Chinese).
李昺, 张志东. 中国科学, 物理学, 力学, 天文学, 2021, 51(6), 44.
[1] 宋欣, 贾文涛, 李健, 周相龙, 马天宇. 2∶17型钐钴永磁材料的相变机制研究新进展[J]. 材料导报, 2023, 37(3): 22120078-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed