Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24010074-7    https://doi.org/10.11896/cldb.24010074
  无机非金属及其复合材料 |
粉磨原位合成PCE对自减水型水泥性能的影响
杨旭1, 张海波1,*, 师广岭2,*, 侯成岩1, 周伟1
1 河南理工大学材料科学与工程学院,河南 焦作 454000
2 平顶山学院化学与环境工程学院,河南 平顶山 467000
Effect of In-situ PCE Synthesis by Grinding on Properties of Self-water-reducing Cement
YANG Xu1, ZHANG Haibo1,*, SHI Guangling2,*, HOU Chengyan1, ZHOU Wei1
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
2 School of Chemical and Environment Engineering, Pingdingshan University, Pingdingshan 467000, Henan, China
下载:  全 文 ( PDF ) ( 8164KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥熟料粉磨能量有效利用率不足60%,大量以热能方式损耗。水泥混凝土中大量使用的聚羧酸减水剂(PCE)合成又需要消耗能量。利用水泥粉磨损耗能量原位合成PCE,制备具有自减水性能的水泥,是降低水泥和减水剂生产能耗的创新途径。本工作根据机械力化学合成原理,将PCE的单体掺入到水泥熟料粉磨过程中,利用粉磨过程的机械能和热能合成PCE,制备具有自减水性能的新型水泥,测试了PCE原料配比对水泥粒径和净浆流动度的影响。采用结合激光拉曼光谱和热分析方法表征了PCE在水泥表面的状态。结果表明,PCE合成原料可以在粉磨过程中发生反应并吸附在水泥颗粒表面,与空白组相比,在最佳原料配比下,相同粉磨时间自减水型水泥平均粒径减小21.5%,初始流动度提升110.0%,3 d抗压强度提高20.3%,28 d抗压强度提高15.9%,累积放热量降低17.1%。结果表明利用水泥粉磨能量原位合成PCE能够起到助磨和减水作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭
张海波
师广岭
侯成岩
周伟
关键词:  水泥  聚羧酸减水剂  流动度  粒径  机械力化学    
Abstract: The energy utilization efficiency of cement clinker grinding is less than 60%, with a significant amount of energy being wasted as heat. Additionally, the synthesis of polycarboxylate-based superplasticizers (PCE), widely used in cement concrete, requires energy consumption. In this work, based on the principle of mechanochemical synthesis, PCE monomers were added to the cement clinker grinding process to synthesize PCE using the mechanical and thermal energy generated during grinding. This innovative approach aims to reduce energy consumption in cement and superplasticizer production. The effects of different PCE composition ratios on cement particle size and workability of paste were tested. The state of PCE on the cement surface was characterized using a combination of laser Raman spectroscopy and thermal analysis methods. The results indicate that the PCE raw materials can react and adsorb on the surface of cement particles during the grinding process. Compared to the blank group, under the optimal raw material ratio, the average particle size of self-reducing cement decreased by 21.5% with the same grinding time, the initial workability increased by 110.0%, the compressive strength at 3 curing days improved by 20.3%, the compressive strength at 28 curing days improved by 15.9%, and the cumulative heat release decreased by 17.1%. This research demonstrates that in-situ synthesis of PCE during cement grinding can achieve both grinding assistance and water-reducing effects.
Key words:  cement    polycarboxylate superplasticizer    fluidity    particle size    mechanochemical
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  O632  
基金资助: 国家自然科学基金重点基金(U1905216)
通讯作者:  *张海波,博士,河南理工大学材料科学与工程学院教授、博士研究生导师,目前主要从事煤矿注浆材料、煤基固废综合利用、绿色建筑材料、水泥混凝土及其外加剂等方面的研究工作。zzhb@hpu.edu.cn;师广岭,硕士,平顶山学院化学与环境工程学院讲师,目前主要研究领域为煤基固废综合利用。2780@pdsu.edu.cn   
作者简介:  杨旭,河南理工大学材料科学与工程学院硕士研究生,在张海波教授的指导下进行研究。目前主要研究领域为混凝土外加剂合成。
引用本文:    
杨旭, 张海波, 师广岭, 侯成岩, 周伟. 粉磨原位合成PCE对自减水型水泥性能的影响[J]. 材料导报, 2025, 39(10): 24010074-7.
YANG Xu, ZHANG Haibo, SHI Guangling, HOU Chengyan, ZHOU Wei. Effect of In-situ PCE Synthesis by Grinding on Properties of Self-water-reducing Cement. Materials Reports, 2025, 39(10): 24010074-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010074  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24010074
1 Li R, Lei L, Sui T, et al. Cement and Concrete Research, 2021, 141, 106334.
2 Sahoo N, Kumar A. Environmental Development, 2022, 44, 100767.
3 Lei L, Hirata T, Plank J. Cement and Concrete Research, 2022, 157, 106826.
4 Dai Min, Li Shurong, Zhao Mingyu. Materials Reports, 2023, 37(17), 288 (in Chinese).
戴民, 李姝蓉, 赵明宇. 材料导报, 2023, 37(17), 288.
5 Feng H, Feng Z, Wang W, et al. Construction and Building Materials, 2021, 292, 123285.
6 Yin Z, Zhang Q, Li S, et al. Science of the Total Environment, 2022, 825, 153992.
7 Huang S, Fang Z, Chen D, et al. Progress in Organic Coatings, 2022, 163, 106651.
8 Zhang Haibo, Shi Guanglin, Li Dongmin, et al. Materials Reports, 2014, 28(16), 104(in Chinese).
张海波, 师广岭, 李东敏, 等. 材料导报, 2014, 28(16), 104.
9 Sun Z, Yang H, Shui L, et al. Construction and Building Materials, 2016, 127, 363.
10 Mezhov A, Pott U, Stephan D, et al. Construction and Building Materials, 2019, 210, 380.
11 Gao Ruijun, Li Juan, Lyu Shenghua, et al. Fine Chemicals, 2023, 40(8), 1841(in Chinese).
高瑞军, 李娟, 吕生华, 等. 精细化工, 2023, 40(8), 1841.
12 Gastaldi D, Boccaleri E. Journal of Materials Science, 2007, 42, 8426.
13 He Yan, Zhang Xiong, Hong Wanling, et al. Journal of Building Materials, 2019, 22(2), 222(in Chinese).
何燕, 张雄, 洪万领, 等. 建筑材料学报, 2019, 22(2), 222.
14 Sun Z, Liu H, Ji Y, et al. Construction and Building Materials, 2020, 233, 117104.
15 Mikać L, Sabolić N, Raic M, et al. Vacuum, 2021, 191, 110335.
16 Chen Xiaodong, Tang Xinde, Zhang Cuizhen, et al. Materials Reports, 2022, 36(S2), 499(in Chinese).
陈晓东, 唐新德, 张翠珍, 等. 材料导报, 2022, 36(S2), 499.
17 Chomyn C, Plank J. Construction and Building Materials, 2020, 246, 118440.
18 Wu Yonghua, Zhu Ting, Dang Zixuan, et al. Materials Reports, 2020, 34(S1), 592(in Chinese).
伍勇华, 祝婷, 党梓轩, 等. 材料导报, 2020, 34(S1), 592.
19 Qian Shanshan, Yao Yan, Wang Ziming, et al. Materials Reports, 2021, 35(2), 2046(in Chinese).
钱珊珊, 姚燕, 王子明, 等. 材料导报, 2021, 35(2), 2046.
20 Zhang X, Chen R, Gao X, et al. Chemical Engineering Journal, 2023, 453, 13998.
21 Soin A V, Catalan L J J, Kinrade S D. Cement and Concrete Research, 2013, 48, 17.
22 Liu Y, Zhang Z, Jing R, et al. Construction and Building Materials, 2021, 293, 123466.
23 Fiss B G, Richard A J, Douglas G, et al. Chemical Society Reviews, 2021, 50(14), 8279.
[1] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[2] 岳汉威, 杨德博, 崔竹, 朱治国, 于雷, 朱永昌. 水泥固化中、低放射性水平废物的机理、应用和挑战:以90Sr为例[J]. 材料导报, 2025, 39(8): 24040159-7.
[3] 刘奎生, 崔勇, 于晓, 栾海涛, 宋奇达, 陈佳俊, 马子翔, 房奎圳. 恒湿与变湿养护条件下MgO膨胀剂对水泥砂浆膨胀性能的影响分析[J]. 材料导报, 2025, 39(7): 24020085-7.
[4] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[5] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[6] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[7] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[8] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[9] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[10] 李少飞, 魏智强, 乔宏霞, 曹辉, 赵辛源, 葸玲玲. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2025, 39(10): 24040171-12.
[11] 陈畅, 丁学成, 酒少武, 陈延信. 纤维特性对磷酸镁基免蒸压加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24050176-7.
[12] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[13] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[14] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[15] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[1] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[2] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[5] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[9] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[10] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed