Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24050176-7    https://doi.org/10.11896/cldb.24050176
  无机非金属及其复合材料 |
纤维特性对磷酸镁基免蒸压加气混凝土性能的影响
陈畅*, 丁学成, 酒少武, 陈延信
西安建筑科技大学材料科学与工程学院,西安 710055
Effect of Fiber Performance on Properties of Magnesium Phosphate-based Non-autoclaved Aerated Concrete
CHEN Chang*, DING Xuecheng, JIU Shaowu, CHEN Yanxin
College of Materials Science and Engineering, Xi′an University of Architecture & Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 16110KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 免蒸压加气混凝土(NAAC)存在强度低和易开裂的问题。本工作采用磷酸镁水泥(MPC)作为基体制备磷酸镁基免蒸压加气混凝土(MPC-NAAC),通过添加聚丙烯纤维和玻璃纤维对其进行增强,系统研究了纤维长度和掺量对其物理、力学和耐水性能的影响;并采用X射线衍射仪和扫描电镜分析其微观结构,揭示了纤维的增强机理。研究结果表明:纤维可以在降低MPC-NAAC干密度的同时提高其抗压和抗折强度,聚丙烯纤维和玻璃纤维的最佳长度均为9 mm,最佳掺量均为0.1%。此时,聚丙烯纤维增强的MPC-NAAC抗压和抗折强度较对照组分别提高了5.95%和16.46%;玻璃纤维增强的MPC-NAAC抗压和抗折强度较对照组分别提高了12.70%和11.39%。此外,纤维与基体之间的作用是物理作用,聚丙烯纤维表现出拔出破坏机制,玻璃纤维表现出断裂破坏机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈畅
丁学成
酒少武
陈延信
关键词:  磷酸镁水泥  纤维长度  纤维掺量  力学性能  微观结构    
Abstract: Non-autoclaved aerated concrete has problems of low strength and easy cracking. In this work, magnesium phosphate cement was used as the matrix to fabricate the magnesium phosphate-based non-autoclaved aerated concrete (MPC-NAAC). The effects of length and content of polypropylene and glass fibers on the properties of MPC-NAAC were systematically investigated. The microstructure was analyzed by X-ray diffractometer and scanning electron microscope to reveal the reinforcement mechanism of the fibers. The results showed that the fibers can improve the compressive and flexural strengths of MPC-NAAC and reduce its dry density. The optimum length and content of both polypropylene and glass fibers were 9 mm and 0.10%, respectively. With this optimum length and content, the compressive and flexural strengths of polypropylene fiber-reinforced MPC-NAAC increased by 5.95% and 16.46%, respectively; and the compressive and flexural strengths of glass fiber-reinforced MPC-NAAC increased by 12.70% and 11.39%, respectively. In addition, the interaction between the fibers and the matrix was physical. A pull-out damage mechanism was exhibited for the polypropylene fiber-reinforced MPC-NAAC and a fracture damage mechanism was exhibited for the glass fibers-reinforced MPC-NAAC.
Key words:  magnesium phosphate cement    fiber length    fiber content    mechanical properties    microstructure
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TU528  
基金资助: “十四五”国家科技重点项目(2022YFC3801401);安徽省科技重点项目(2021e03020003);陕西省创新能力支撑计划项目(2021TD-53)
通讯作者:  *陈畅,博士,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事复合材料、相变材料、多孔材料等方面的研究。changchen420@xauat.edu.cn   
引用本文:    
陈畅, 丁学成, 酒少武, 陈延信. 纤维特性对磷酸镁基免蒸压加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24050176-7.
CHEN Chang, DING Xuecheng, JIU Shaowu, CHEN Yanxin. Effect of Fiber Performance on Properties of Magnesium Phosphate-based Non-autoclaved Aerated Concrete. Materials Reports, 2025, 39(10): 24050176-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050176  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24050176
1 Yang L, Yan Y, Hu Z. Construction and Building Materials, 2013, 44, 600.
2 Esmaily H, Nuranian H. Construction and Building Materials, 2012, 26(1), 200.
3 Shan C, Yang Z, Su Z, et al. Journal of Building Engineering, 2022, 49, 104036.
4 Xia Y, Yan Y, Hu Z. Construction and Building Materials, 2013, 47, 1461.
5 Li F X, Chen Y Z, Yu Q J, et al. Advanced Materials Research, 2011, 250, 707.
6 Wang M N, Ji J, Ma N, et al. Concrete, 2021, (1), 139 (in Chinese).
王美娜, 姬军, 马宁, 等. 混凝土, 2021, (1), 139.
7 Liu R, Pang B, Zhao X, et al. Construction and Building Materials, 2020, 263, 120180.
8 Ma H, Xu B, Li Z. Cement and Concrete Research, 2014, 65, 96.
9 Qin Z, Ma C, Zheng Z, et al. Construction and Building Materials, 2020, 234, 117353.
10 Wei Y, Zhou X T, Huang J, et al. Materials Reports, 2022, 36(4), 73(in Chinese).
韦宇, 周新涛, 黄静, 等. 材料导报, 2022, 36(4), 73.
11 Li T, Wang Z, Zhou T, et al. Construction and Building Materials, 2019, 205, 566.
12 Liu Y, Chen B. Construction and Building Materials, 2019, 214, 516.
13 Liu Y, Chen B. Journal of Materials in Civil Engineering, 2015, 27(1), 04014112.
14 Ma C, Chen B. Construction and Building Materials, 2017, 137, 160.
15 Amran Y H M, Farzadnia N, Abang Ali A A. Construction and Building Materials, 2015, 101, 990.
16 Ren J T, Hu R R, Huang W, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(12), 4254(in Chinese).
任劲滔, 胡冗冗, 黄炜, 等. 硅酸盐通报, 2023, 42(12), 4254.
17 Ferretti D, Michelini E, Rosati G. Cement and Concrete Research, 2015, 67, 156.
18 Quan W, Huang W, An Y, et al. Construction and Building Materials, 2023, 377, 131153.
19 Haque M A, Chen B. Construction and Building Materials, 2019, 211, 885.
20 Xu R S, He T S, Da Y Q, et al. Construction and Building Materials, 2019, 208, 242.
21 He T S, Xu R S, Da Y Q, et al. Journal of Cleaner Production, 2019, 234, 559.
22 Blazy J, Blazy R. Case Studies in Construction Materials, 2021, 14, e00549.
23 Tran N P, Gunasekara C, Law D W, et al. Construction and Building Materials, 2022, 335, 127497.
24 Ahmad J, González-Lezcano R A, Majdi A, et al. Materials, 2022, 15(15), 5111.
25 Ding C, Ren J M, Wang Y M, et al. Materials Reports, 2023, 37(13), 249(in Chinese).
丁聪, 任金明, 王永明, 等. 材料导报, 2023, 37(13), 249.
26 Zhu K, Ma X, Yao L, et al. Advances in Materials Science and Engineering, 2021, 2021, 1.
27 Ma Z, Ma C, Du C, et al. Construction and Building Materials, 2023, 404, 133282.
28 Falliano D, Parmigiani S, Suarez-Riera D, et al. Journal of Building Engineering, 2022, 51, 104329.
29 Fang Y, Chen B, Oderji S Y. Construction and Building Materials, 2018, 188, 729.
30 Zhao J, Wang X, Li S, et al. Construction and Building Materials, 2023, 405, 133241.
31 Xu Y, Xing G, Zhao J, et al. Construction and Building Materials, 2021, 307, 124978.
32 Vigneshwaran S, Sundarakannan R, John K M, et al. Journal of Cleaner Production, 2020, 277, 124109.
33 Yang Y, Zhou Q, Deng Y, et al. Cement and Concrete Composites, 2020, 108, 103509.
34 Liu Y, Chen B, Qin Z, et al. Construction and Building Materials, 2020, 257, 119570.
35 Chen C, Ma F T, He T S, et al. Journal of Cleaner Production, 2022, 371, 133711.
36 Shi X, Ning B, Wang J, et al. Construction and Building Materials, 2023, 400, 132689.
37 Yang Y, Zhou Q, Deng Y. Construction and Building Materials, 2020, 242, 118184.
38 Li J, Yu Y, Kim T, et al. Construction and Building Materials, 2023, 398, 132509.
39 Senff L, Novais R M, Carvalheiras J, et al. Construction and Building Materials, 2020, 239, 117805.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed