Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040190-4    https://doi.org/10.11896/cldb.24040190
  高分子与聚合物基复合材料 |
GNPs改性环氧复合材料等效弹性性能数值预测模型
徐焜, 黄子悦, 程云浦, 钱小妹*
电子科技大学航空航天学院,成都 611731
Numerical Prediction Model on Effective Elastic Performance of GNPs Modified Epoxy Resin
XU Kun, HUANG Ziyue, CHENG Yunpu, QIAN Xiaomei*
School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China
下载:  全 文 ( PDF ) ( 10315KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯纳米片(Graphene nanoplatelets,GNPs)作为一种重要的碳基纳米改性粒子,其优异的力-热-电特性能可有效提升环氧树脂的综合性能。然而,GNPs随机分布特征明显、空间构型复杂,增加了GNPs改性环氧复合材料力学性能的分析难度。本工作针对GNPs改性环氧树脂建模难度大、计算效率低等问题,提出了一种新的2D随机分布GNPs改性环氧胞元几何模型,基于2D周期性位移边界条件,考虑GNPs横观各向同性弹性本构关系,构建了材料等效弹性性能的有限元预测模型,并详尽分析了GNPs质量分数、尺寸等对材料等效弹性性能的影响规律。分析表明,2D随机分布GNPs改性环氧有限元模型能有效表征材料等效弹性性能,且具有预测精度高、数值收敛快等特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐焜
黄子悦
程云浦
钱小妹
关键词:  石墨烯纳米片  改性树脂  有限元方法  力学性能    
Abstract: Graphene nanoplatelets (GNPs) are regarded as an important carbon-nanoparticle, which can effectively improve the comprehensive performance of epoxy resin due to their extraordinary mechanical, thermal, and electrical properties. However, the spatial random distribution configuration of GNPs is so complicated that it is difficult to establish the finite element model for predicting the mechanical properties. Regarding to the challenge of numerical modeling with high computational costs, this paper first proposed a novel two-dimensional periodical unit-cell model characterizing the random distribution configuration of GNPs. Then the finite element model for predicting the effective elastic properties was established. The periodical displacement boundary conditions were applied in the finite element model to ensure the continuity of stress and displacement of the unit cell. The transversely isotropic elastic properties of GNPs were considered in the model by transforming the constitutive relations. Based on the presented model, the effects of GNPs volume fraction, unit cell size and quantity of random unit cells on the elastic properties were discussed in detail. Research indicates that the effectiveness of the presented 2D finite element model with randomly distributed GNPs is va-lidated, which possesses high prediction accuracy and computational efficiency.
Key words:  graphene nanoplatelets    modified resin    finite element method    mechanical property
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TB332  
基金资助: 四川省自然科学基金(2022NSFSC0313)
通讯作者:  钱小妹,电子科技大学航空航天学院讲师。目前主要从事共固化电磁功能复合材料结构设计、超材料隐身复合材料设计等方面的研究工作。xmqian@uestc.edu.cn   
作者简介:  徐焜,电子科技大学航空航天学院副教授、博士研究生导师。目前主要从事隐身飞行器多学科设计、电磁功能结构一体化智能设计等方面的研究工作。
引用本文:    
徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
XU Kun, HUANG Ziyue, CHENG Yunpu, QIAN Xiaomei. Numerical Prediction Model on Effective Elastic Performance of GNPs Modified Epoxy Resin. Materials Reports, 2025, 39(8): 24040190-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040190  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040190
1 Smith A T,LaChance A M,Zeng S,et al.Nano Materials Science,2019,1(1),31.
2 Aradhana R,Mohanty S,Nayak S K.Polymer,2018,141,109.
3 Dong W,Zhao M,Jin F L,et al.Korean Journal of Chemical Engineering,2022,39(7),1968.
4 Li Y L,Wang Q,Wang S J.Composites Part B: Engineering,2019,160,348.
5 Zhang X,Heng Z,Shen L,et al.Journal of Applied Polymer Science,2020,137,e49402.
6 Hussein A,Kim B.Composite Structures,2019,215,266.
7 Wu Q,Xie D J,Zhang Y D,et al.Composites Part B: Engineering,2019,156,148.
8 Wei T,Luo G,Fan Z,et al.Carbon,2009,47(9),2296.
9 Lin F,Xiang Y,Shen H S.Composites Part B: Engineering,2017,111,261.
10 Shokrieh M M,Shokrieh Z,Hashemianzadeh S M.Materials & Design,2014,64,96.
11 Mori T,Tanaka K.Acta Metallurgica,1973,21(5),571.
12 Yuan Z S,Lu Z X.Computational Materials Science,2014,95,610.
13 Xu K,Qian X M,Duan D H,et al.Mechanics of Materials,2018,126,163.
14 Yang S Y,Lin W N,Huang Y L,et al.Carbon,2011,49(3),793.
15 Woo S,Park H C,Son Y W.Physical Review B,2016,93(7),075420.
[1] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[2] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[3] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[4] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[5] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[6] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[7] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[8] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[9] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[10] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[11] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[12] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[13] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[14] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[15] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed