Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040075-8    https://doi.org/10.11896/cldb.24040075
  无机非金属及其复合材料 |
赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响
雒亿平1,*, 邢美光1, 王德法2, 易万成2, 杨连碧2, 薛国斌3
1 西安理工大学水利水电学院,西安 710048
2 西安理工大学土木与建筑工程学院,西安 710048
3 国网甘肃省电力公司,兰州 730030
Effect of Hematite on Mechanical Properties and Reaction Mechanism of Metakaolin-based Geopolymers
LUO Yiping1,*, XING Meiguang1, WANG Defa2, YI Wancheng2, YANG Lianbi2, XUE Guobin3
1 College of Water Resources and Hydropower, Xi'an University of Technology, Xi'an 710048, China
2 College of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China
3 Senior Engineer of State Grid Gansu Electric Power Company, Lanzhou 730030, China
下载:  全 文 ( PDF ) ( 39411KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 探讨了赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响,分析添加不同含量的赤铁矿对地聚物抗压强度、微观结构变化和物相变化的影响。研究表明:偏高岭土基地聚物的流动度随赤铁矿掺量的增加而降低。当赤铁矿掺量从0.2%增至0.6%时,试件抗压强度增长率从27.97%跃升至56.46%,掺量为0.6%的试样抗压强度达到49.17 MPa。当添加0.6%的赤铁矿固化1 d后,试件抗压强度达到44.31 MPa,为7 d强度的90%,表明赤铁矿的掺加对地聚物的早期强度有显著的改善效果。赤铁矿提供了铁元素,平衡了地聚物体系中的n(Si)/n(Al)和n(Si)/n(Fe)。热重分析结果表明,MKF-0试样总质量损失达88.46%,MKF-0.6试样总质量损失达87.58%,赤铁矿颗粒的加入促使更多的胶凝物质生成。SEM显微图表明,赤铁矿同时作为增强剂和填料,使地聚物凝胶区域更均匀、致密。XRD和FTIR结合分析表明,添加赤铁矿,偏高岭土基地聚物会同时产生铝硅酸盐(N-A-S-H)和铝硅酸铁(Fe(Al) -S-H)以及硅酸铁(Fe2(SiO4)3)物质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雒亿平
邢美光
王德法
易万成
杨连碧
薛国斌
关键词:  地聚物  赤铁矿  力学性能  微观结构  反应机理    
Abstract: The effects of hematite on the mechanical properties and reaction mechanism of metakaolin-based polymers were discussed, and the effects of different contents of hematite on the compressive strength, microstructure and phase changes of geopolymers were analyzed. The results show that the fluidity of metakaolin-based polymers decreases with the increase of hematite content. When the hematite content increases from 0.2% to 0.6%, the growth rate of the compressive strength of the specimen jumps from 27.97% to 56.46%, and the compressive strength of the specimen with 0.6% content reaches 49.17 MPa. When 0.6% hematite was added for 1 day, the compressive strength of the specimen reached 44.31 MPa, which was 90% of the 7-day strength, indicating that the addition of hematite had a significant improvement effect on the early strength of geopolymers. Hematite provides iron and balances n(Si)/n(Al) and n(Si)/n(Fe) in the geopolymer system. The results of thermogravimetric analysis showed that the total mass loss of MKF-0 specimen was 88.46%, and that of MKF-0.6 specimen was 87.58%, and the addition of hematite particles promoted the formation of more cementitious substances. SEM micrographs show that hematite acts as both a reinforcing agent and a filler, making the geopolymer gel region more uniform and dense. XRD and FTIR analysis showed that the addition of hematite and metakaolin-based polymers produced both aluminosilicate (N-A-S-H) and iron aluminosilicate (Fe(Al)-S-H) and iron silicate (Fe2(SiO4)3).
Key words:  geopolymers    hematite    mechanical property    microstructure    reaction mechanism
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TU58  
基金资助: 榆林市2020年科技计划项目(CXY-2020-081);基于粉煤灰高效利用的地聚合物混凝土热力学性能研究(2023-YBSF-440)
通讯作者:  雒亿平,博士,西安理工大学水利水电工程学院教授。主要研究方向为岩土工程和混凝土新材料。luoyipingxy@163.com   
引用本文:    
雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
LUO Yiping, XING Meiguang, WANG Defa, YI Wancheng, YANG Lianbi, XUE Guobin. Effect of Hematite on Mechanical Properties and Reaction Mechanism of Metakaolin-based Geopolymers. Materials Reports, 2025, 39(8): 24040075-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040075  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040075
1 Yang K H, Jung Y B, Cho M S, et al. Journal of Cleaner Production, 2015, 103, 774.
2 Liew Y M, Yong H C, Li L Y, et al. Construction and Building Materials, 2017, 156, 9.
3 Li Z, Zhang S, Zuo Y, et al. Cement and Concrete Research, 2019, 120, 108.
4 Davidovits J. Journal of ThamalAnalysis, 1991, 37, 1633.
5 Davidovics J. Ceramic Engineering and Science Proceedings, 1988, 9(7-81), 835.
6 O'Connor S J, MacKenzie K J D. Journal of Materials Science, 2010, 45(14), 3707.
7 Waychunas G A, Kim C S, Banfield J F, et al. Journal of Nanoparticle Research, 2005, 7(4-5), 409.
8 Lemougna P N, MacKenzie K J D, Jameson G N L, et al. Journal of Materials Science, 2013, 48(15), 5280.
9 Zailani W W A, Abdullah M M A, Arshad M F, et al. Conference Series: Materials Science and Engineering, 2020, 877(1), 12.
10 Ionescu B A, Chira M, Vermes·an H, et al. Materials, 2022, 15(19), 65.
11 Subaer, Haris A, Irhamsyah A, et al. Journal of Physics: Conference Series, 2019, 1244(1), 1742.
12 Kaze R C, Beleuk à Moungam L M, Cannio M, et al. Journal of Cleaner Production, 2018, 199, 849.
13 Gallup D. L. Geothermics, 1989, 18(1), 97.
14 Khoshakhlagh A, Nazari A, Khalaj G, et al. Journal of Materials Science & Technology, 2012, 28(1), 73.
15 Kaya K, Soyer-Uzun S. Ceramics International, 2016, 42(6), 7406.
16 Augusto K S, Paciornik S. Materials Research, 2018, 21(2), e20170621.
17 Xie X, Liu T, Zhang J, et al. Journal of Building Engineering, 2023, 72, 106608.
18 Lemougna P N, Madi A B, Kamseu E, et al. Construction and Building Materials, 2014, 65, 60.
19 Benavent V, Frizon F, Poulesquen A, et al. Journal of Applied Crystallography, 2016, 49(6), 2116.
20 Muhammad F, Xia M, Li S, et al. Journal of Cleaner Production, 2019, 234, 381.
21 Waltraud M K, Jonathon L. Advances in Ceramic Matrix Composites IX (Bansal/Advances), 2004, 153, 227.
22 Lv Y, Qin Y, Wang J, et al. Construction and Building Materials, 2022, 327, 126.
23 Kaze R C, Beleuk à Moungam L M. Applied Clay Science, 2017, 138, 48.
24 Obonyo E, Kamseu E, Lemougna P, et al. Sustainability, 2014, 6(9), 5535.
25 Steveson M. Journal of Materials Science, 2005, 40, 2023.
26 Duxson P, Provis J L, Lukey G C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269, 47.
27 Moya J S, Cabal B, Lopez-Esteban S, et al. Ceramics International, 2024, 50(1), 1329.
28 Pacheco-Torgal F, Castro-Gomes J, Jalali S, et al. Construction and Building Materials, 2008, 22(7), 1305.
29 Luo Y, Jiang Z, Wang D, et al. Construction and Building Materials, 2022, 361, 129678
30 Liu X, Jiang J, Zhang H, et al. Applied Clay Science, 2020, 196, 105769.
31 Benavent V, Lahalle H, Patapy C, et al. Cement and Concrete Research, 2022, 161, 106897.
32 White C E, Provis J L. The Journal of Physical Chemistry A, 2010, 114, 4988.
33 Zhang Z, Yao X, Zhu H, et al. Journal of the Wuhan University of Technology-Materials Science Edition, 2009, 24(1), 132.
34 Tchakouté H K, Rüscher C H, Kong S, et al. Waste and Biomass Valorization, 2016, 8(3), 573.
35 Quong R. California, 1976, 11, 2172.
36 Dimas D D, Giannopoulou I P, Panias D, et al. Mineral Processing and Extractive Metallurgy Review, 2009, 30(3), 211.
37 Sidhu P S. Clays and Clay Minerals, 1988, 36, 31.
38 Andini S, Cioffi R, Colangelo F, et al. Waste Management, 2008, 28(2), 416.
39 Ge Y, Cui X, Kong Y, et al. Journal of Hazardous Materials, 2015, 283, 244.
40 Sarkar M, Dana K, Das S, et al. Journal of Molecular Structure, 2015, 1098, 110.
41 Gao K, Lin K L, Wang D, et al. Construction and Building Materials, 2014, 53, 503.
42 The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland, 1974, 1, 36
43 Blake R L, Hessevick R E, Zoltai T, et al. American Mineralogist, 1966, 51(1-2), 123.
44 San Cristóbal A G, Castelló R, Martín Luengo M A, et al. Applied Clay Science, 2010, 49(3), 239.
45 Kumar A, Kumar S. Construction and Building Materials, 2013, 38, 865.
[1] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[2] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[3] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[4] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[5] 苏友义, 张明, 陶雯艳, 杨萍萍, 郭星辰, 邓徐, 谢佳乐. 硝酸盐催化还原合成氨研究进展[J]. 材料导报, 2025, 39(7): 24040024-12.
[6] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[7] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[8] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[9] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[10] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[11] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[12] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[13] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[14] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[15] 唐晓龙, 温佳俊, 刘媛媛, 王成志, 罗宁, 段二红, 周远松, 易红宏, 高凤雨. CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究[J]. 材料导报, 2025, 39(5): 24020126-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[7] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[8] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[9] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[10] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed