Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24020126-7    https://doi.org/10.11896/cldb.24020126
  无机非金属及其复合材料 |
CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究
唐晓龙1,*, 温佳俊1, 刘媛媛1, 王成志2, 罗宁1, 段二红3, 周远松1, 易红宏1, 高凤雨1,*
1 北京科技大学能源与环境工程学院,工业典型污染物资源化处理北京市重点实验室,北京 100083
2 河南省科学院化学研究所,郑州 450002
3 河北科技大学环境科学与工程学院,石家庄 050018
Catalytic Performance of CoMn2O4/Ce-TiO2 Bifunctional Catalyst for the Simultaneous Removal of NOx and CO
TANG Xiaolong1,*, WEN Jiajun1, LIU Yuanyuan1, WANG Chengzhi2, LUO Ning1, DUAN Erhong3, ZHOU Yuansong1, YI Honghong1, GAO Fengyu1,*
1 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Institute of Chemistry of Henan Academy of Sciences, Zhengzhou 450002, China
3 College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
下载:  全 文 ( PDF ) ( 12169KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 实现工业烟气的超低排放及多污染物协同控制是当前大气污染治理的重要任务。本工作以负载型Mn基尖晶石催化剂为研究对象,通过Co、Ce金属改性的方式研发了一种低温选择性催化还原(Selective catalytic reduction,SCR)脱硝兼顾CO氧化的CoMn2O4/Ce-TiO2双功能催化剂。研究了不同烟气组分对同时脱硝脱CO效率的影响:SO2对脱硝效率、脱CO效率均表现出抑制作用,而H2O降低了NOx转化率却可以提高CO转化率;CO与NH3在较低浓度下起到双还原剂的作用,共同提升NOx转化率,而在较高浓度时,二者由于竞争吸附导致CO转化率下降。分析认为,Mn是主要的SCR反应活性位点,Co是主要的脱CO活性位点,而Ce物种对SCR反应和脱CO反应都具有一定的作用。在同时脱硝脱CO反应中,NOx主要通过NH3-SCR反应脱除,CO主要通过氧化反应脱除。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐晓龙
温佳俊
刘媛媛
王成志
罗宁
段二红
周远松
易红宏
高凤雨
关键词:  氨选择性催化还原(NH3-SCR)  一氧化碳氧化  CoMn2O4/Ce-TiO2催化剂  二氧化硫    反应机理    
Abstract: Achieving ultra-low industrial flue gas emissions and synergistically controlling multiple pollutants are key tasks in air pollution management today. In this work, a loaded Mn-based spinel catalyst was used as a research object, and a bifunctional CoMn2O4/Ce-TiO2catalyst for low-temperature SCR denitrification and CO oxidation was developed through modification of Co and Ce. The impacts of different flue gas components on the efficiency of simultaneous denitrification and de-CO (decontamination of CO) were mainly investigated:SO2 inhibited denitrification and de-CO efficiency, whereas H2O lowered NOx conversion rate but enhanced CO conversion rate; CO and NH3 acted as a double reductant at lower concentrations, which jointly promoted the improvement of the NOx conversion rate, whereas the two caused a decrease of the CO conversion rate due to the competition for adsorption at higher concentrations. The analysis reveals that Mn was the primary active site in the SCR reaction, Co was the primary active site in the de-CO reaction, and Ce species played a role in both the SCR and de-CO reactions.The simultaneous denitrification and de-CO process eliminated NOx through the NH3-SCR reaction and CO through the oxidation reaction.
Key words:  ammonia selective catalytic reduction (NH3-SCR)    carbon monoxide oxidation    CoMn2O4/Ce-TiO2 catalyst    sulfur dioxide    water    reaction mechanism
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  X511  
基金资助: 国家自然科学基金(U20A20130);中央高校基本科研业务费(FRF-EYIT-23-07);建龙集团-北京科技大学青年科技创新基金
通讯作者:  *唐晓龙,北京科技大学能源与环境工程学院教授、博士研究生导师,长期以来主要从事烟气脱硫脱硝技术、工业废气资源化利用技术、环境功能材料等方向的研究。txiaolong@126.com
高凤雨,北京科技大学能源与环境工程学院副教授、硕士研究生导师,北京市科协青年人才托举工程获得者,小米青年学者,主要从事大气污染控制与资源化、环境能源催化等方向的研究。ahnuhkgao@163.com   
引用本文:    
唐晓龙, 温佳俊, 刘媛媛, 王成志, 罗宁, 段二红, 周远松, 易红宏, 高凤雨. CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究[J]. 材料导报, 2025, 39(5): 24020126-7.
TANG Xiaolong, WEN Jiajun, LIU Yuanyuan, WANG Chengzhi, LUO Ning, DUAN Erhong, ZHOU Yuansong, YI Honghong, GAO Fengyu. Catalytic Performance of CoMn2O4/Ce-TiO2 Bifunctional Catalyst for the Simultaneous Removal of NOx and CO. Materials Reports, 2025, 39(5): 24020126-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020126  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24020126
1 Zhang R D, Liu N, Lei Z G, et al. Chemical Reviews, 2016, 116 (6), 3658.
2 Chen Z H, Wang F R, Li H, et al. Industrial & Engineering Chemistry Research, 2011, 51 (1), 202.
3 Gao F Y, Tang X L, Yi H H, et al. Appiled Surface Science, 2019, 466, 411.
4 Yang S J, Wang C Z, Li J H, et al. Applied Catalysis B:Environmental, 2011, 110, 71.
5 Fang D, Xie J L, Mei D, et al. RSC Advances, 2014, 4 (49), 25540.
6 Gao F Y, Tang X L, Yi H H, et al. Journal of Environmental Sciences, 2020, 89, 145.
7 Wu Z B, Jin R B, Wang H Q, et al. Catalysis Communications, 2009, 10 (6), 935.
8 Wu Z B, Jin R B, Liu Y, et al. Catalysis Communications, 2008, 9 (13), 2217.
9 Faure B, Alphonse P. Applied Catalysis B:Environmental, 2016, 180, 715.
10 Portillo-Vélez N S, Zanella R. Chemical Engineering Journal, 2020, 385, 123848.
11 Liu H, Liu L L, Wei L Q, et al. Fuel, 2020, 272, 117738.
12 Feng C L, Liu X L, Zhu T Y, et al. Applied Catalysis A:General, 2021, 622, 118218.
13 Lin J, Qiao B, Li L, et al. Journal of Catalysis, 2014, 319, 142.
14 Wang T, Xing J Y, Zhu L, et al. Applied Catalysis B:Environmental, 2019, 245, 314.
15 Zeng Y, Rong W, Zhang S, et al. Fuel, 2024, 358, 130277.
16 Wang J Q, Xing Y, Su W, et al. Fuel, 2022, 321, 124050.
17 Gui R R, Xiao J W, Gao Y S, et al. Applied Catalysis B:Environmental, 2022, 306, 121104.
18 Liu Q, Mi J X, Chen X P, et al. Chemical Engineering Journal, 2021, 423, 130228.
19 Li Z L, Cheng H, Zhang X B, et al. Catalysis Science & Technology, 2021, 11 (14), 4987.
20 Zheng Y, Harold M P, Luss D. Catalysis Today, 2016, 264, 44.
21 Gao F Y, Yan H, Tang X L, et al. Journal of Environmental Sciences, 2021, 101, 36.
22 Zang P, Liu J, He Y, et al. Chemical Engineering Journal, 2022, 446, 137414.
23 Shi Y R, Yi H H, Gao F Y, et al. Journal of Hazardous Materials, 2021, 413, 125361.
24 Shi Y R, Yi H H, Gao F Y, et al. Separation and Purification Technology, 2021, 265, 118517.
25 Tang X L, Wang C Z, Gao F Y, et al. Journal of Environmental Chemical Engineering, 2020, 8(5), 104399.
26 Shi Y R, Tang X L, Yi H H, et al. Industrial & Engineering Chemistry Research, 2019, 58 (9), 3606.
27 Tan H S, Ma S B, Zhao X Y, et al. Applied Catalysis A:General, 2021, 627, 118374.
28 Liu X F, Xing Z P, Zhang Y, et al. Applied Catalysis B:Environmental, 2017, 201, 119.
29 Luo N, Gao F Y, Liu H H, et al. Applied Catalysis B:Environmental, 2024, 343, 123442.
30 Wang X M, Li X Y, Zhao Q D, et al. Chemical Engineering Journal, 2016, 288, 216.
31 Geng Y, Shan W, Yang S, et al. Industrial & Engineering Chemistry Research, 2018, 57 (28), 9112.
32 Liu Z M, Zhu J Z, Li J H, et al. ACS Applied Materials & Interfaces, 2014, 6 (16), 14500.
33 Mi T G, Wu Y W, Xu M X, et al. Applied Catalysis A:General, 2021, 616, 118104.
34 Huan W, Li J, Ji J, et al. Chinese Journal of Catalysis, 2019, 40 (5), 656.
[1] 谢梦恬, 马雨龙, 孙一榕, 孙海, 许维国, 王国良, 丁建勋. 生物活性水凝胶通过调控细胞行为促进皮肤慢性创面愈合[J]. 材料导报, 2025, 39(5): 24120195-14.
[2] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[3] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[4] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[5] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[6] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[7] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[8] 张凯伦, 潘栋, 郭庆涛, 仲红刚, 张宇, 张翔宇, 徐佩. 不同二冷比水量下24Mn钢连铸坯枝晶生长热模拟研究[J]. 材料导报, 2025, 39(5): 23100237-8.
[9] 张佳庆, 尚峰举, 黄杰, 张含灵, 盛友杰. 典型水成膜泡沫灭火剂流变性研究[J]. 材料导报, 2025, 39(5): 23110197-6.
[10] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[11] 姜骞, 于诚, 张茜, 周脉席, 刘建忠, 韩方玉. 清水混凝土的表面气孔缺陷形成与调控研究进展[J]. 材料导报, 2025, 39(4): 23110170-8.
[12] 赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
[13] 侯明玥, 姚日晖, 罗东向, 郑华, 刘贤哲, 黎振超, 蔡炜, 宁洪龙, 彭俊彪. 可穿戴电子用前驱体型银墨水研究进展[J]. 材料导报, 2025, 39(4): 23110204-11.
[14] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[15] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed