Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24020133-9    https://doi.org/10.11896/cldb.24020133
  无机非金属及其复合材料 |
碳纤维增强水泥基材料界面改性研究进展
王志航1,2, 白二雷1,*, 黄河3, 杜宇航4, 任彪1
1 空军工程大学航空工程学院,西安 710038
2 空军勤务学院机场勤务保障系,江苏 徐州 221000
3 陆军研究院工程设计研究所,北京 100043
4 同济大学土木工程学院,上海 200092
Research Progress of Interfacial Modification of Carbon Fiber Reinforced Cement-based Material
WANG Zhihang1,2, BAI Erlei1,*, HUANG He3, DU Yuhang4, REN Biao1
1 Aviation Engineering School, Air Force Engineering University, Xi’an 710038, China
2 Department of Airport Service Supports Air Force Logistics Academy, Xuzhou 221000, Jiangsu, China
3 Engineering Design and Research Institute, Army Research Institute, Beijing 100043, China
4 College of Civil Engineering, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 31856KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维常被作为增强相用以提高水泥基材料的性能,然而碳纤维与水泥基材料的相容性较差。碳纤维表面活性基团少,表现为化学惰性,与水泥基材料的结合仅依靠机械摩擦力。碳纤维表面光滑,与水泥基材料的机械摩擦力小,界面结合较差,从而影响碳纤维效果的发挥。因此,研究者们通过碳纤维表面处理或复掺其他材料对碳纤维/水泥浆体界面进行改善。本文从碳纤维表面氧化、碳纤维表面接枝纳米材料、纳米材料与碳纤维复掺以及聚合物与碳纤维复掺等方面出发,对国内外碳纤维增强水泥基材料界面改性的研究现状进行了总结分析,可为今后碳纤维增强水泥基材料性能的提升提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志航
白二雷
黄河
杜宇航
任彪
关键词:  水泥基材料  碳纤维  界面性能  纳米材料  表面接枝    
Abstract: Carbon fiber is often used as a reinforcement to improve the properties of cement-based material, but the compatibility between carbon fiber and cement-based material is poor. There are few active groups on the surface of carbon fiber, and it shows chemically inert and is bound to cement-based material only by mechanical friction. The surface of carbon fiber is smooth, so the mechanical friction between carbon fiber and cement-based material is small and the interface bonding is poor, which affects the reinforced effect of carbon fiber. Therefore, surface treatment of carbon fiber or mixing other materials are used to improve the carbon fiber/cement interface. In this paper, the research status of interface modification of carbon fiber reinforced cement-based material is reviewed in terms of carbon fiber surface oxidation, carbon fiber surface grafting nanomaterials, nanomaterials mixed with carbon fiber and polymer mixed with carbon fiber, which should provide a reference for the properties improvement of carbon fiber reinforced cement-based material in the future.
Key words:  cement-based material    carbon fiber    interface perperty    nanomaterial    surface grafting
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TU599  
基金资助: 国家自然科学基金(52278287);空军工程大学优秀博士学位论文扶持基金(KGD082323002)
通讯作者:  *白二雷,空军工程大学航空工程学院副教授、博士研究生导师。主要研究领域为军事工程防护与抢修。   
作者简介:  王志航,博士,现为空军勤务学院机场勤务保障系讲师,主要研究方向为防护工程材料和结构。songchenwzh@163.com
引用本文:    
王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
WANG Zhihang, BAI Erlei, HUANG He, DU Yuhang, REN Biao. Research Progress of Interfacial Modification of Carbon Fiber Reinforced Cement-based Material. Materials Reports, 2025, 39(5): 24020133-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020133  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24020133
1 Lei D Y, Li M A, Zhang P, et al. Journal of the Chinese Ceramic Society, 2023, 51(11), 2876 (in Chinese).
雷东移, 李明昂, 张鹏, 等. 硅酸盐学报, 2023, 51(11), 2876.
2 Wang F, Kan L L, Yu J T, et al. Construction and Building Materials, 2023, 388, 131580.
3 Li S, Zheng W Z, Zhou W, et al. Composite Structures, 2023, 318, 117084.
4 Amin M N, Ahmad W, Khan K, et al. Materials, 2022, 15(17), 6155.
5 Fang S Y, Ba M F, Xu H F, et al. Materials Reports, 2023, 37(15), 295(in Chinese).
方思怡, 巴明芳, 许浩锋, 等. 材料导报, 2023, 37(15), 295.
6 Tian W C, Qi B M, Liu Y S. Construction and Building Materials, 2021, 282, 122729.
7 Wang C, Li K Z, Li H J, et al. Journal of the Chinese Ceramic Society, 2008(10), 1348 (in Chinese).
王闯, 李克智, 李贺军, 等. 硅酸盐学报, 2008(10), 1348.
8 Wu D Y, Xiong X B, Ma J, et al. Ceramics International, 2023, 49(23), 37535.
9 Li L, Shen Z G, Tu X P, et al. Shanghai Textile Science & Technology, 2024, 52(2), 1(in Chinese).
李磊, 沈志刚, 屠晓萍, 等. 上海纺织科技, 2024, 52(2), 1.
10 Yu J Y, Liu X Y, Li T Y, et al. Concrete, 2021(9), 90 (in Chinese).
余瑾瑶, 刘小艳, 李田雨, 等. 混凝土, 2021(9), 90.
11 Xie S L, Lei H H, Zhang C L, et al. Surface Technology, 2022, 51(11), 186 (in Chinese).
谢顺利, 雷红红, 张春丽, 等. 表面技术, 2022, 51(11), 186.
12 Zhang Z, He H W, Gao F. New Chemical Materials, 2013, 41(6), 181 (in Chinese).
张拯, 何宏伟, 高峰. 化工新型材料, 2013, 41(6), 181.
13 Deng J, Huo J C, Hu C Y, et al. Non-metallic Mines, 2013, 36(3), 21 (in Chinese).
邓均, 霍冀川, 胡程耀, 等. 非金属矿, 2013, 36(3), 21.
14 Wang Z J, Gao J, Wei Y F, et al. Journal of Chang’an University (Na-tural Science Edition), 2015, 35(2), 26 (in Chinese).
王振军, 高杰, 魏永锋, 等. 长安大学学报(自然科学版), 2015, 35(2), 26.
15 Luca L, Simone M, Giuseppe F, et al. Cement and Concrete Composites, 2018, 88, 165.
16 Pan D, Xing F, Kang F Y. Concrete and Cement Products, 2003(1), 32 (in Chinese).
潘冬, 邢锋, 康飞宇. 混凝土与水泥制品, 2003(1), 32.
17 Peng C H. Study on interfacial bonding properties and mechanism of carbon fiber/ultra-high performance concrete matrix. Master’s Thesis, South China University of Technology, China, 2022 (in Chinese).
彭楚汗. 碳纤维/超高性能混凝土基体界面粘结性能及机理研究. 硕士学位论文, 华南理工大学, 2022.
18 Huang H L, Peng C H, Luo J, et al. Cement and Concrete Composites, 2023, 139, 105014.
19 Cheng X W, Shi Y, Long D, et al. Journal of the Chinese Ceramic Society, 2016, 44(5), 673 (in Chinese).
程小伟, 时宇, 龙丹, 等. 硅酸盐学报, 2016, 44(5), 673.
20 Liu G S, Liu Y X, Bian D, et al. Surface Technology, 2021, 50(4), 62 (in Chinese).
刘高尚, 刘雅玄, 卞达, 等. 表面技术, 2021, 50(4), 62.
21 Mei H, Zhang S M, Chen H, et al. Composites Science and Technology, 2016, 134, 89.
22 Chu D M, Dong Q P, Bai W J, et al. New Chemical Materials, 2023, 51(1), 1 (in Chinese).
楚电明, 董乾鹏, 白文娟, 等. 化工新型材料, 2023, 51(1), 1.
23 Zhang M H, Cao W Y, Xiao J W. New Chemical Materials, 2021, 49(6), 38 (in Chinese).
张美会, 曹维宇, 肖建文. 化工新型材料, 2021, 49(6), 38.
24 Lyu M Y. Study on strengthening and toughening of nano-silica and fiber-modified cement-based composites. Ph. D. Thesis, Harbin Institute of Technology, China, 2021 (in Chinese).
吕梦圆. 纳米二氧化硅与纤维改性水泥基复合材料的强韧化研究. 博士学位论文, 哈尔滨工业大学, 2021.
25 Lyu M Y, Xiao H G, Min L, et al. Cement and Concrete Composites, 2018, 91, 21.
26 Cheng J Q. Study on mechanical properties and microstructure of carbon fiber reinforced cement-based composites modified by surface coating. Master’s Thesis, Liaoning Shihua University, China, 2020 (in Chinese).
程健强. 表面涂层改性碳纤维增强水泥基复合材料的力学性能及微观结构研究. 硕士学位论文, 辽宁石油化工大学, 2020.
27 Zhang L L. Study on cracking and impermeability of modified carbon fiber reinforced cement-based materials. Master’s Thesis, Southeast University, China, 2021 (in Chinese).
张玲玲. 改性碳纤维增强水泥基材料抗裂抗渗性的研究. 硕士学位论文, 东南大学, 2021.
28 Li X J. Study on cement-based composites modified by nanomaterials and their interfacial properties. Master’s Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
李晓娇. 纳米材料改性水泥基复合材料及其界面性能研究. 硕士学位论文, 哈尔滨工业大学, 2015.
29 Li Y M, Guo X Y, Yang J L, et al. International Journal of Polymer Science, 2019, 2019, 2783018.
30 Heo G H, Park J G, Song K C, et al. Advances in Civil Engineering, 2020, 2020, 8838179.
31 Shi T, Li Z X, Li S S. Acta Materiae Compositae Sinica, 2019, 36(6), 1528 (in Chinese).
施韬, 李泽鑫, 李闪闪. 复合材料学报, 2019, 36(6), 1528.
32 Yang Z Q, Zhu H L. Journal of Functional Materials, 2023, 54(8), 8217 (in Chinese).
杨志全, 朱红霖. 功能材料, 2023, 54(8), 8217.
33 Xia W, Lu S, Bai E L, et al. Materials Reports, 2023, 37(16), 110 (in Chinese).
夏伟, 陆松, 白二雷, 等. 材料导报, 2023, 37(16), 110.
34 Lu S, Xia W, Bai E L, et al. Composites Part B:Engineering, 2022, 247, 110340.
35 Xia W, Lu S, Bai E L, et al. Journal of Building Engineering, 2023, 63, 105482.
36 Du Y H, Lu S, Xu J Y, et al. Scientific Reports, 2022, 12(1), 12928.
37 Du Y H, Lu S, Xu J Y, et al. Case Studies in Construction Materials, 2023, 18, e01994.
38 Yan X T. Study on mechanical properties of carbon nanotubes and carbon fiber modified cement-based materials. Master’s Thesis, Shenzhen University, China, 2018 (in Chinese).
严咸通. 碳纳米管及碳纤维改性水泥基材料力学性能研究. 硕士学位论文, 深圳大学, 2018.
39 Cui H H, Jin Z Y, Zheng D P, et al. Construction and Building Materials, 2018, 181, 713.
40 Liu X Y, Jiang B, Liao G, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2021, 29(10), 844.
41 Zhou F F, Pan G H, Zhang L L. Journal of Building Engineering, 2023, 63, 105542.
42 Wu L, Lyu S H, Li Z X, et al. Acta Materiae Compositae Sinica, 2023, 40(4), 2296 (in Chinese).
吴磊, 吕生华, 李泽雄, 等. 复合材料学报, 2023, 40(4), 2296.
43 Sheng K, Yang S, Bi J F, et al. Acta Materiae Compositae Sinica, 2022, 39(11), 5486 (in Chinese).
盛况, 杨森, 毕俊峰, 等. 复合材料学报, 2022, 39(11), 5486.
44 Lu Z Y, Hanif A, Sun G X, et al. Cement and Concrete Composites, 2018, 87, 220.
45 Zhao D. Surface modification of carbon fiber by graphene and properties of cement-based composites. Master’s Thesis, Jinan University, China, 2015 (in Chinese).
赵丹. 石墨烯对碳纤维表面修饰及其水泥基复合材料性能研究. 硕士学位论文, 济南大学, 2015.
46 Chen J, Zhao D, Ge H Y, et al. Construction and Building Materials, 2015, 84, 66.
47 Li M, Wang H, Zhang C, et al. Journal of Adhesion Science and Technology, 2019, 33(22), 2494.
48 Tang Y Y, Jin H. Urban Architecture, 2021, 18(8), 162(in Chinese).
汤寅寅, 金浩. 城市建筑, 2021, 18(8), 162 .
49 Li Y, Deng Y G, Xu C W. Concrete, 2020(5), 60 (in Chinese).
李瑶, 邓永刚, 徐长伟. 混凝土, 2020(5), 60.
50 Yan L, Xing Y M. Acta Materiae Compositae Sinica, 2013, 30(3), 133 (in Chinese).
燕兰, 邢永明. 复合材料学报, 2013, 30(3), 133.
51 Niu J W. Properties and modification mechanism of nano silica and carbon fiber composite mortar. Master’s Thesis, Dalian University of Technology, China, 2015 (in Chinese).
牛建伟. 纳米氧化硅和碳纤维复合砂浆性能与改性机制. 硕士学位论文, 大连理工大学, 2015.
52 Yang H B. Study on cement-based materials reinforced by carbon-based materials with integrated structure-function phase change energy storage. Master’s Thesis, Shenzhen University, China, 2018 (in Chinese).
杨海宾. 碳基材料增强结构-功能一体化相变储能水泥基材料的研究. 硕士学位论文, 深圳大学, 2018.
53 Wu L S, Lu Z H, Zhuang C L, et al. Materials, 2019, 12, 3773.
54 Cui X, Zhou D C, Wang Y L, et al. Cement Wapno Beton, 2018, 23(4), 317.
55 Liu R, Xiao H G, Geng J S, et al. Construction and Building Materials, 2020, 244, 118297.
56 Zhao P. Evaluation of CF/CNTs reinforced calcium phosphate bone cement composites and their biocompatibility. Ph. D. Thesis, Shandong University, China, 2006 (in Chinese).
赵萍. CF/CNTs增强磷酸钙骨水泥复合材料及其生物相容性评价. 博士学位论文, 山东大学, 2006.
57 Yang Q K. Study on the modification of cement-based materials by mixing graphene and carbon fiber. Master’s Thesis, Jinan University, China, 2020 (in Chinese).
杨庆宽. 石墨烯和碳纤维复掺对水泥基材料的改性研究. 硕士学位论文, 济南大学, 2020.
58 Yang Q K, Wang J B, Yuan L W, et al. Ceramics-Silikáty, 2019, 63(4), 403.
59 Li X M. Journal of Functional Materials, 2018, 49(6), 6158 (in Chinese).
李显铭. 功能材料, 2018, 49(6), 6158.
60 Chen Z S, Zhou X, Wang X, et al. Construction and Building Materials, 2018, 159, 205.
61 Wang T J, Xu J Y, Bai E L, et al. International Journal of Hydrogen Energy, 2023, 48(90), 35366.
62 Lyu G J, Ji T. Journal of Building Materials, 2021, 24(5), 970 (in Chinese).
吕官记, 季韬. 建筑材料学报, 2021, 24(5), 970.
63 Hasan M M, Matsumoto K. Construction and Building Materials, 2023, 409, 134046.
64 Gao J M, Dong X, Jiang Y Q, et al. Journal of Southeast University (Natural Science Edition), 2006(2), 288 (in Chinese).
高建明, 董祥, 蒋亚清, 等. 东南大学学报(自然科学版), 2006(2), 288.
65 Shou C Q, Wang C J, Yang C Y, et al. Concrete, 2007(10), 68 (in Chinese).
寿崇琦, 王朝进, 杨春艳, 等. 混凝土, 2007(10), 68.
66 Hu C H, Wang Y W, Zhu C X. Bulletin of the Chinese Ceramic Society, 2022, 41(1), 20 (in Chinese).
胡春红, 王彦伟, 朱昌星. 硅酸盐通报, 2022, 41(1), 20.
67 Wu Y M, Xu M B, Song J J, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(1), 253 (in Chinese).
吴宇萌, 许明标, 宋建建, 等. 硅酸盐通报, 2019, 38(1), 253.
68 Chang S, Xu J Y, Yang N. Journal of Functional Materials, 2019, 50(11), 11161 (in Chinese).
常森, 许金余, 杨宁. 功能材料, 2019, 50(11), 11161.
69 Liu G J, Bai E L, Xu J Y, et al. Construction and Building Materials, 2020, 261, 119995.
70 Liu G J, Bai E L, Xu J Y, et al. Materials, 2019, 12, 3530.
71 Wang Z H, Bai E L, Xu J Y, et al. Acta Materiae Compositae Sinica, 2023, 40(3), 1586 (in Chinese).
王志航, 白二雷, 许金余, 等. 复合材料学报, 2023, 40(3), 1586.
72 Meng X, Bai E L, Wang Z H, et al. Journal of Civil and Environmental Engineering, 2023, 45(1), 54 (in Chinese).
孟欣, 白二雷, 王志航, 等. 土木与环境工程学报(中英文), 2023, 45(1), 54.
[1] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[2] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[3] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[4] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[5] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[6] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[7] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[10] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[11] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[12] 陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
[13] 陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
[14] 张铖, 王振地, 史鑫宇, 李庭忠, 孙国星, 梁瑞. 超吸水树脂对高性能水泥基复合材料收缩和水化的影响[J]. 材料导报, 2024, 38(22): 23090194-7.
[15] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed