Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23090194-7    https://doi.org/10.11896/cldb.23090194
  无机非金属及其复合材料 |
超吸水树脂对高性能水泥基复合材料收缩和水化的影响
张铖1, 王振地2, 史鑫宇3, 李庭忠1,4, 孙国星1,4, 梁瑞1,*
1 珠海澳大科技研究院,广东 珠海 519000
2 中国建筑材料科学研究总院绿色建筑材料国家重点实验室,北京 100024
3 奥胡斯大学土木与建筑系,丹麦 奥胡斯 8000
4 澳门大学应用物理及材料工程研究院,中国 澳门 999078
Effect of Super Absorbent Polymers on Shrinkage and Hydration Properties of High-performance Cement-based Composites
ZHANG Cheng1, WANG Zhendi2, SHI Xinyu3, LI Tingzhong1,4, SUN Guoxing1,4, LIANG Rui1,*
1 Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, Guangdong, China
2 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
3 Department of Civil and Architecture, Aarhus University, Aarhus 8000, Denmark
4 Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
下载:  全 文 ( PDF ) ( 3628KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作基于高原干燥环境下高性能混凝土收缩问题,研究了不同掺量的阴离子型聚丙烯酰胺超吸水树脂(SAP-YF)与商用聚丙烯酸型超吸水树脂(SAP-S)对水泥基材料在干燥环境下收缩性能的影响,结果表明,随着SAP掺量的增大,水泥基材料的自收缩与强度逐渐减小,干燥收缩则无明显变化;在考虑不影响强度及最大程度减缩的前提下,SAP-YF在水灰比为0.20条件下的最优掺量为0.20%,减缩率为28.21%;XRD与TG结果表明在养护至7 d时,掺有SAP的试件组的水化程度和固相组成含量的增幅相比于对照组有较为明显的改善。掺入SAP后,净浆试件基体内部的相对湿度能够维持在有利于胶凝材料水化的环境中,可持续7 d或更长时间,从而加速了胶凝材料的早期水化进程。基于XRD、TG试验与理论研究,建立了干燥环境下含SAP水泥基材料固相组成随养护时间的演变模型,这可为热力学模型计算及高原干燥环境下混凝土配合比设计提供数据支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张铖
王振地
史鑫宇
李庭忠
孙国星
梁瑞
关键词:  超吸水树脂  高性能水泥基材料  收缩性能  水化性能    
Abstract: Based on the shrinkage problem of high-performance concrete in high-altitude dry environments, the effects of different dosage of the anionic polyacrylamide polyacrylate superabsorbent polymers (SAP-YF) and a commercial polypropylene-based super absorbent polymers (SAP-S) on the shrinkage properties of cement-based materials under high-altitude dry environment were studied. The test results showed that with an increase in SAP dosage, the autogenous shrinkage and strength of the cement-based materials gradually decreased, while the drying shrinkage remained relatively unchanged. Considering the premise of not affecting the strength and minimizing shrinkage, the optimal dosage of SAP-YF was 0.20% under a water-cement ratio of 0.20, with a shrinkage reduction rate of 28.21%. XRD and TG results showed that the hydration degree and solid phase composition of the SAP-containing specimens exhibited significant improvements compared to the control group after 7 d of curing. The introduction of SAP helped maintain the internal moisture content of the paste matrix, creating an environment conducive to the hydration of cementitious materials for 7 d or more. The inclusion of SAP accelerated the early hydration process of cementitious materials. Based on XRD, TG experiments, and theoretical research, a model for the evolution of solid-phase composition of cement-based materials containing SAP with curing time under dry conditions was established, which could provide data support for thermodynamic model calculations and concrete mix design in high-altitude dry environments.
Key words:  super absorbent polymers    high-performance cement-based material    shrinkage property    hydration property
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TU528  
基金资助: 国家自然科学基金优秀青年科学基金项目(港澳)(52122001);绿色建筑材料国家重点实验室开放基金(2023GBM01);澳门科学技术发展基金(0040/2022/A1);中国博士后基金面上项目(2022M713666)
通讯作者:  *梁瑞,现于珠海澳大科技研究院从事博士后研究。2010年6月于山东大学获工学学士学位。2014年、2018年于香港科技大学分别获工学硕士和工学博士学位。主要从事有机无机复合材料的机理与性能研究,并致力于实验室产品的产业化推广。发表学术论文30余篇,其中以第一或通信作者在Cement and Concrete Research、Advanced Materials、ACS Applied Materials & Interfaces、Journal of Colloid and Interface Science等期刊发表 SCI 收录论文 15 篇,这些研究工作被国内外同行专家引用 2 000余次。rliangaa@connect.ust.hk   
作者简介:  张铖,现于珠海澳大科技研究院从事博士后研究。2015年6月、2019年6月分别于西安工业大学和大连大学获得工学学士学位和硕士学位,2022年8月于中国建筑材料科学研究总院获博士学位。主要从事特殊环境下混凝土抗裂行为与机理、应力-环境因素作用下混凝土劣化损伤、寒冷环境下3D打印等研究。发表科研论文20余篇,承担或参与国家、省、市重大科研项目9项。
引用本文:    
张铖, 王振地, 史鑫宇, 李庭忠, 孙国星, 梁瑞. 超吸水树脂对高性能水泥基复合材料收缩和水化的影响[J]. 材料导报, 2024, 38(22): 23090194-7.
ZHANG Cheng, WANG Zhendi, SHI Xinyu, LI Tingzhong, SUN Guoxing, LIANG Rui. Effect of Super Absorbent Polymers on Shrinkage and Hydration Properties of High-performance Cement-based Composites. Materials Reports, 2024, 38(22): 23090194-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090194  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23090194
1 Mehta P K, Monteiro P. Concrete:microstructure, properties, and materials, New York, USA:McGraw-Hall, 2013.
2 Jensen O M, Lura P. Materials and Structures, 2006, 39(9), 817.
3 Kong X M, Zhang Z L. Journal of the Chinese Ceramic Society, 2013, 41(11), 1474.
孔祥明, 张珍林. 硅酸盐学报, 2013, 41(11), 1474.
4 Kong X M, Zhang Z L. Journal of the Chinese Ceramic Society, 2014, 42(2), 150(in Chinese).
孔祥明, 张珍林. 硅酸盐学报, 2014, 42(2), 150.
5 Kong X M, Zhang Z L. Journal of Building Materials, 2014, 17(4), 559(in Chinese).
孔祥明, 张珍林. 建筑材料学报, 2014, 17(4), 559.
6 Kong X M, Li Q H. Journal of the Chinese Ceramic Society, 2009, 37(5), 855(in Chinese).
孔祥明, 李启宏. 硅酸盐学报, 2009, 37(5), 855.
7 Liu J H. Internal curing of SAP and FLW A in ultra-high performance concrete. Ph. D. Thesis, Hunan University, China, 2019(in Chinese).
刘剑辉. SAP与FLWA在超高性能混凝土中的内养护作用. 博士学位论文, 湖南大学, 2019.
8 Zhang Y T, Sun X W. Journal of Building Engineering, 2022, 58, 104986.
9 Younis M O, Amin M, Tahwia A M. Case Studies in Construction Materials, 2022, 17, e01251.
10 Xu F M, Lin X S, Zhou A N, et al. Construction and Building Materials, 2022, 322, 126484.
11 Cui H Y, Chen F F, Liao Y, et al. Composites Communications, 2022, 33, 101236.
12 Liu J H, Farzadnia N, Shi C J, et al. Cement and Concrete Composites, 2019, 97, 175.
13 Ma X W, Yuan Q, Liu J H, et al. Construction and Building Materials, 2019, 195, 66.
14 Wang F Z, Shang D C, Qi G H. Journal of Building Materials, 2015, 18(2), 190(in Chinese).
王发洲, 商得辰, 齐广华. 建筑材料学报, 2015, 18(2), 190.
15 Esteves L P, Lukošiūtė I, Čėsnienė J. Journal of Thermal Analysis and Calorimetry, 2014, 118(2), 1385.
16 Hasholt M T, Jensen O M, Kovler K, et al. Construction and Building Materials, 2012, 31, 226.
17 Jensen O M, Hansen P F. Cement and Concrete Research, 2001, 31, 647.
18 Ma X F, Wen G H. Journal of Polymer Research, 2020, 27(6), 136.
19 Qi Z M, Hu X S. European Polymer Journal, 2022, 166, 111045.
20 Liu L, Zhang W S, Ren X H, et al. Cement and Concrete Research, 2021, 147, 106519.
21 Liu L, Zhang W S, Ren X H, et al. Cement and Concrete Research, 2023, 164, 107043.
22 Wang S, Li B L, Pan Z Y, et al. Journal of Central South University(Science and Technology), 2020, 51(5), 1189(in Chinese).
王申, 李保亮, 潘子云, 等. 中南大学学报(自然科学版), 2020, 51(5), 1189.
23 Bhatty J I. Thermochimica Acta, 1986, 106, 93.
24 Zhang C, Wang L, Yao Y, et al. Materials Reports, 2022, 36(7), 174(in Chinese).
张铖, 王玲, 姚燕, 等. 材料导报, 2022, 36(7), 174.
25 Zhang G, Peng G F, Zuo X Y, et al. Cement and Concrete Research, 2023, 167, 107130.
26 Zhang C. Deterioration process and carbonation depth prediction model of concrete under combined action of stress and carbonation, Ph. D. Thesis, China Building Materials Academy, China, 2022(in Chinese).
张铖. 应力与碳化耦合作用下混凝土劣化过程及碳化深度预测模型研究, 中国建筑材料科学研究总院, 2022.
27 Papadakis V G, Vayeneas C G, Fardis M N. ACI Materials Journal, 1991, 88(4), 363.
[1] 陈汝琪, 张祖华, 史才军. 掺废陶瓷粉对碱激发矿渣早期反应、硬化体强度及收缩性能的影响[J]. 材料导报, 2023, 37(17): 22030249-8.
[2] 王传林, 刘泽平, 张腾腾, 张宇轩. 海水及养护方式对硅酸盐水泥性能的影响[J]. 材料导报, 2022, 36(10): 21010137-7.
[3] 李碧雄, 汪知文, 苏柳月, 冷发光. 减小EPS混凝土收缩的配合工艺试验研究[J]. 材料导报, 2021, 35(16): 16021-16027.
[4] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[5] 周新涛, 郝旭涛, 彭金辉, 罗中秋. 复合外加剂对铬铁渣基复合材料水化机理的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 121-125.
[6] 郭 伟,王 春,孙佳胜,陈 艳,俞平胜,蒋金海. 硫铝酸钙-贝利特水泥熟料的低温制备及其水化性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 35-39.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed